

Universal Robots e-Series Benutzerhandbuch

UR16e Übersetzung der originalen Anleitungen (de)

Die hier enthaltenen Informationen sind Eigentum von Universal Robots A/S und dürfen nur im Ganzen oder teilweise vervielfältigt werden, wenn eine vorherige schriftliche Genehmigung von Universal Robots A/S vorliegt. Diese Informationen können jederzeit und ohne vorherige Ankündigung geändert werden und sind nicht als Verbindlichkeit von Universal Robots A/S auszulegen. Dieses Dokument wird regelmäßig geprüft und überarbeitet.

Universal Robots A/S übernimmt keinerlei Verantwortung für jedwede Fehler oder Auslassungen in diesem Dokument.

Copyright © 2009-2021 by Universal Robots A/S.

Das Logo von Universal Robots ist eine eingetragene Handelsmarke von Universal Robots A/S.

Inhalt

1. Vorwort 1	1
1.1. Verpackungsinhalt	2
1.2. Wichtiger Sicherheitshinweis	3
1.3. Lesen dieses Handbuchs	3
1.4. Wo Sie weitere Informationen finden	3
1.4.1. UR+	3
Teil I Hardware-Installationshandbuch	5
2. Sicherheit	7
2.1. Vorwort	7
2.2. Gültigkeit und Verantwortung	7
2.3. Haftungsbeschränkung	3
2.4. Warnsymbole in diesem Handbuch	3
2.5. Allgemeine Warnungen und Sicherheitshinweise)
2.6. Verwendungszweck	1
2.7. Risikobewertung	2
2.8. Lagebewertung vor der ersten Verwendung14	1
2.9. Notabschaltung	5
2.10. Bewegung ohne Antriebskraft15	5
3. Sicherheitsrelevante Funktionen und Schnittstellen	7
3.1. Vorwort	7
3.2. Stoppkategorien	3
3.3. Konfigurierbare Sicherheitsfunktionen18	3
3.4. Sicherheitsfunktion	2
3.5. Betriebsarten	3
4. Transport	5
5. Mechanische Schnittstelle	7
5.1. Vorwort	7
5.2. Wirkungsbereich des Roboters27	7
5.3. Montage	7
5.4. Maximale Nutzlast	1
6. Elektrische Schnittstelle	2
6.1. Vorwort	2

6.1.1. Halterung für Control-Box	
6.2. Ethernet	
6.3. Elektrische Warnungen und Sicherheitshinweise	33
6.4. Controller-E/A	
6.4.1. Gemeinsame Spezifikationen für alle Digital-E/A	
6.4.2. Sicherheits-E/A	
6.4.3. Digital-E/A für allgemeine Zwecke	42
6.4.4. Digitaleingang durch eine Taste	42
6.4.5. Kommunikation mit anderen Maschinen oder einer SPS	42
6.4.6. Analog-E/A für allgemeine Zwecke	
6.4.7. EIN-/AUS-Remote-Steuerung	44
6.5. Netzanschluss	
6.6. Roboteranschluss: Roboterkabel	
6.6.1. Roboter-Anschlusskabel	47
6.7. Roboteranschluss: Basisflanschkabel	47
6.7.1. Basisflanschkabelstecker	47
6.8. Werkzeug E/A	48
6.8.1. Werkzeugstromversorgung	
6.8.2. Stromversorgung	49
6.8.3. Doppel-Pin Stromversorgung	
6.8.4. Digitalausgänge des Werkzeugs	
6.8.5. Digitaleingänge des Werkzeugs	51
6.8.6. Analoger Werkzeugeingang	
6.8.7. Werkzeugkommunikation-E/A	53
7. Wartung und Reparatur	
7.1. Sicherheitsanweisungen	54
7.2. Reinigung	55
7.3. Inspektion	56
7.3.1. Roboterarm Inspektionsplan	
7.3.2. Sichtprüfung Roboterarm	56
7.3.3. Control-Box Inspektionsplan	
7.3.4. Control-Box Sichtprüfung	57
7.3.5. Freedrive Inspektion	
8 Entsorauna und Umwelt	
9. Zertifizierungen	

10.1. Produkt-Gewährleistung	62
10.2. Haftungsausschluss	63
11. Nachlaufzeit und -strecke	64
12. Erklärungen und Zertifikate	68
13. Erklärungen und Zertifikate (übersetzung des Originals)	70
14. Zertifizierungen	72
15. Angewandte Normen	79
16. Technische Spezifikationen	85
17. Tabellen zu Sicherheitsfunktionen	87
17.1. Table 1	87
17.2. Table 2	93
Teil II PolyScope-Handbuch	97
18. Vorwort	99
18.1. Roboterarm-Grundlagen	99
18.2. PolyScope Grundlagen	99
18.2.1. Touch-Screen	100
18.2.2. Symbole/Tabs in der Kopfzeile	101
18.2.3. Schaltflächen in der Fußzeile	102
18.3. Installation	103
18.3.1. Installation von Roboterarm und Control-Box	103
18.3.2. Control-Box ein- und ausschalten	103
18.4. Initialisierung	104
18.4.1. Starten des Roboterarms	105
18.5. Schnelle Inbetriebnahme des Systems	105
18.6. Das erste Programm	106
18.7. Roboter-Registrierung und URCap-Lizenzdateien	107
18.7.1. Registrierung des Roboters aus Ihrem aktuellen Bildschirm	108
18.7.2. Herunterladen der URCAP-Lizenzdatei	108
18.7.3. Roboter-Registrierung zurücksetzen	109
19. Freedrive	111
19.1. Freedrive aktivieren: Standard-Teach-Pendant	112
19.1.1. Freedrive-Schaltfläche	112
19.1.2. Verwenden der Freedrive-Schaltfläche auf dem Bildschirm der Registerkarte "Bewegen"	113
19.2. Freedrive aktivieren: 3PE-Teach-Pendant	113

20. Backdrive	114
20.1. Backdrive aktivieren: Standard-Teach-Pendant	114
20.2. Backdrive aktivieren: 3PE-Teach-Pendant	114
21. Betriebsmodus-Auswahl	
21.1. Betriebsmodi	115
21.2. Drei-Stellungs-Zustimmschalter	
21.2.1. Manueller Modus mit hoher Geschwindigkeit	117
22. Sicherheitskonfiguration	
22.1. Grundlagen der Sicherheitseinstellungen	
22.1.1. Sicherheitskonfiguration aufrufen	119
22.2. Sicherheitspasswort festlegen	120
22.3. Änderung der Sicherheitskonfiguration	
22.4. Neue Sicherheitskonfiguration anwenden	
22.5. Sicherheitsprüfsumme	121
22.6. Einstellungen im Menü Sicherheit	121
22.7. Roboter-Limits	122
22.8. Sicherheitsmodi	124
22.9. Toleranzen	124
22.10. Gelenk- grenzen	
22.11. Ebenen	
22.11.1. Betriebsarten	126
22.11.2. Sicherheitsebenen konfigurieren	127
22.11.3. Ellbogen	
22.11.4. Farbcodes	
22.12. Freedrive	
22.12.1. Freedrive-Schaltfläche	
22.13. Backdrive	
22.13.1. Backdrive aktivieren:	
22.14. Werkzeugposition	
22.15. TCP-Ausrichtung	131
22.15.1. Begrenzungseinstellungen	
22. Ib. E/A	
22.16.1. Eingangssignale	
	134

22.16.3. OSSD-Sicherheitssignale	
22.17. Hardware	
22.17.1. Verfügbare Hardware auswählen	
22.18. Sichere Ausgangsposition	
22.18.1. Synchronisierung der Ausgangsposition	
22.19. Ausgang Sichere Ausgangsposition	
22.19.1. Festlegung des Sichere Ausgangsposition-Output	137
22.20. Sichere Ausgangsposition bearbeiten	
22.20.1. Sichere Ausgangsposition bearbeiten	
23. Der Tab "Betrieb"	139
23.1. Programm	
23.2. Variablen	139
23.3. Roboteralter	140
23.4. Roboter in Position fahren	
23.4.1. Zugriff auf den Bildschirm Roboter in Position fahren	141
23.4.2. Roboter fahren zu:	141
23.4.3. Manuell	141
24. Programm - Tab	
24.1. Programmstruktur	143
24.1.1. Programmausführungsanzeige	144
24.1.2. Schaltfläche Suchen	
24.2. Programmstruktur Werkzeugleiste	
24.2.1. Rückgängig/Erneut ausführen - Taste	
24.2.2. Nach Oben & Unten bewegen	144
24.2.3. Ausschneiden	145
24.2.4. Kopieren	145
24.2.5. Einfügen	145
24.2.6. Löschen	
24.2.7. Kommentar	145
24.3. Ausdruck-Editor	146
24.4. Programm von ausgewähltem Knoten starten	146
24.4.1. Verwendung der Option Abspielen ab Auswahl	
24.5. Verwendung von Haltepunkten in einem Programm	147
24.6. Einzelschritte in einem Programm	
24.7. Der Tab "Befehl"	

24.8. Grafik-Tab	151
24.9. Der "Variablen" -Tab	152
24.10. Basisprogrammknoten	
24.10.1. Bewegen	
24.10.2. Fixer Wegepunkt	
24.10.3. Relativer Wegepunkt	162
24.10.4. Variabler Wegepunkt	163
24.10.5. Richtung	
24.10.6. Stopbedingung	164
24.10.7. Bis-Werkzeugkontakt	165
24.10.8. Warten	
24.10.9. Einstellen	
24.10.10. Meldung	
24.10.11. Halt	
24.10.12. Kommentar	
24.10.13. Ordner	170
24.10.14. Nutzlast festlegen	171
24.11. Erweiterte Programmknoten	171
24.11.1. Schleife	
24.11.2. If	
24.11.3. Unterprogramm	173
24.11.4. Zuweisung	
24.11.5. Script	174
24.11.6. Event	175
24.11.7. Thread	176
24.11.8. Switch	176
24.11.9. Timer	
24.11.10. Home	
24.12. Assistenten	
24.12.1. Palettierung	
24.12.2. Suchen	
24.12.3. Kraft	
24.12.4. Auswahl des Kraftwertes	
24.12.5. Geschwindigkeitsbegrenzung	191
24.12.6. Testeinstellungen für Kraft	191
24.12.7. Förderbandverfolgung	
24.12.8. Schraubtechnik	193
24.12.9. Schraubtechnik Bis	194

24.13. URCaps	
24.13.1. Remote-TCP und Werkzeugpfad URCap	
24.13.2. Bewegungsarten für Remote-TCP	197
24.13.3. Remote-TCP-Wegpunkt	198
24.13.4. Remote TCP Werkzeugpfad	
24.13.5. Remote TCP	
24.13.6. Remote TCP PCS	
24.13.7. Gewöhnliche TCP Werkzeugpfad Bewegungen	
25. Register Installation	
25.1. Allgemein	
25.2. TCP-Konfiguration	
25.2.1. Position	
25.2.2. Orientierung	
25.2.3. Hinzufügen, Umbenennen, Ändern und Entfernen von TCPs	
25.2.4. Anlernen (Teaching) der TCP-Position	
25.2.5. Anlernen (Teaching) der TCP-Ausrichtung	
25.3. Nutzlast	
25.3.1. Hinzufügen, Umbenennen, Ändern und Entfernen von Nutzlasten	
25.3.2. Festlegen des Schwerpunkts	210
25.3.3. Schätzung der Nutzlast	
25.3.4. Trägheit	211
25.4. Montage	
25.5. E/A-Einstellung	213
25.5.1. E/A Signaltyp	
25.5.2. Zuordnen von benutzerdefinierten Namen	
25.5.3. E/A-Aktionen und E/A-Tabsteuerung	
25.6. Installationsvariablen	216
25.7. Autostart	217
25.7.1. Laden eines Anlaufprogramms	
25.7.2. Starten eines Anlaufprogramms	218
25.8. Werkzeug E/A	
25.9. Steuerung E/A-Schnittstelle	
25.10. Analoge Werkzeugeingänge	
25.10.1. Kommunikationsschnittstelle für Tools	
25.10.2. Konfigurieren der Kommunikationsschnittstelle für Werkzeuge (TCI)	
25.11. Einstellungen Digitalausgänge	

25.11.1. Parallelschaltung der Ausgänge	221
25.12. Sanfter Übergang zwischen Sicherheitsmodi	221
25.12.1. Einstellungsänderungen für Beschleunigung/Verlangsamung	221
25.13. Home	222
25.13.1. Festlegen von Ausgangsposition	222
25.14. Einstellungen für Förderbandverfolgung	222
25.14.1. Definieren eines Fließbands	223
25.14.2. Förderband-Parameter	223
25.14.3. Parameter für Förderbandsbandverfolgung	223
25.15. Schraubtechnik-Einstellungen	224
25.15.1. Konfiguration eines Schraubendrehers	224
25.15.2. Konfiguration der Position des Schraubendrehers	225
25.15.3. Konfiguration der Schnittstelle des Schraubendrehers	226
25.16. Sicherheit	226
25.17. Koordinatensys	227
25.17.1. Verwenden einer Funktion	229
25.17.2. Verwenden von: Roboter hierher bewegen	229
25.17.3. Punkt-Funktion	229
25.17.4. Linien-Funktion	230
25.17.5. Funktion Ebene	231
25.17.6. Beispiel: Manuelle Anpassung einer Funktion zur Anpassung eines Programm	ns232
25.17.7. Beispiel: Dynamisches Aktualisieren einer Funktion	233
25.17.8. Funktionsbearbeitung	235
25.18. Feldbus	237
25.19. MODBUS-Client-E/A-Einstellung	237
25.19.1. Aktualisieren	237
25.19.2. Einheit hinzufügen	238
25.19.3. Einheit löschen	238
25.19.4. Einstellung IP-Adresse Einheit	238
25.19.5. Sequenzieller Modus	238
25.19.6. Signal hinzufügen	238
25.19.7. Signal löschen	238
25.19.8. Signaltyp einstellen	238
25.19.9. Signaladresse einstellen	239
25.19.10. Signalname einstellen	239
25.19.11. Signalwert	239
25.19.12. Status Signalkonnektivität	240

25.19.13. Erweiterte Optionen anzeigen	
25.19.14. Erweiterte Optionen	
25.20. Ethernet/IP	241
25.21. PROFINET	242
26. Register Move	
26.1. Bewegung des Werkzeuges	243
26.2. Roboter	
26.2.1. Koordinatensystem	244
26.2.2. Aktive TCP	244
26.2.3. Home	244
26.2.4. Freedrive	
26.2.5. Ausrichten	244
26.3. Werkzeugposition	245
26.4. Gelenkposition	245
26.5. Bearbeitungsanzeige "Pose"	
26.5.1. Roboter	
26.5.2. Funktion und Werkzeugposition	
26.5.3. Gelenkpositionen	248
26.5.4. Schaltfläche "OK"	
26.5.5. Schaltfläche "Abbrechen"	
27. E/A-Tab	249
27.1. Roboter	
27.2. MODBUS	
28. Der Tab "Protokoll"	
28.1. Messwerte und gemeinsame Last	
28.2. Protokoll nach Datum	
28.3. Fehlerberichte speichern	
28.4. Datei für technische Unterstützung (Support-Datei)	
29. Programm- und Installations-Manager	
29.1. Öffnen	257
29.2. Neu	258
29.3. Speichern	
29.4. Datei-Manager	
30. Hamburger-Menü	
30.1. Hilfe	

30.2. Info	
30.3. Einstellungen	
30.3.1. Einstellungen	
30.3.2. Passwort	
30.4. System	
30.4.1. Sicherung und Wiederherstellung	
30.4.2. Aktualisieren	
30.4.3. Netzwerk	
30.4.4. Verwaltung von URCaps	
30.4.5. Fernsteuerung	
30.4.6. Sicherheit	
Ausführung magischer Dateien	
Konfigurieren eingehender Verbindungen	
Authentifizierung	
Verwalten autorisierter Schlüssel	
30.5. Roboter Herunterfahren	
31. Glossar	
31.1. Index	

1. Vorwort

Herzlichen Glückwunsch zum Erwerb Ihres neuen Universal Robots e-Series-Roboters.

Der Roboter kann zur Bewegung eines Werkzeugs programmiert werden und mit anderen Maschinen über elektrische Signale kommunizieren. Sein Arm besteht aus stranggepressten Aluminiumrohren und Gelenken.

Über unsere patentierte Programmieroberfläche PolyScope ist die Programmierung des Roboters zur Bewegung eines Werkzeugs entlang eines gewünschten Weges einfach.

2.1: Die Gelenke, die Basis und der Werkzeugflansch am Roboterarm.

Mit sechs Gelenken und einem hohen Grad an Flexibilität sind die kooperativen Roboterarme der e-Series von Universal Robots wie dafür geschaffen, die Bewegungsabläufe eines menschlichen Arms nachzuempfinden. Über unsere patentierte Programmieroberfläche PolyScope ist die Programmierung des Roboters zur Bewegung eines Werkzeugs und zur Kommunikation mit anderen Maschinen anhand elektrischer Signale einfach. In Abbildung 2.1: Die Gelenke, die Basis und der Werkzeugflansch am Roboterarm. oben sind die Hauptkomponenten des Roboterarms zu sehen. Die Abbildung kann im Verlauf des Handbuchs zum Nachschlagen herangezogen werden.

1.1. Verpackungsinhalt

Wenn Sie einen Roboter bestellen, erhalten Sie zwei Pakete. Eines beinhaltet den Roboterarm, das andere enthält die folgenden Komponenten:

- Control-Box mit Teach Pendant
- Montagevorrichtung für die Control-Box
- Montagevorrichtung für das Teach Pendant
- Schlüssel zum Öffnen der Control-Box
- Kabel zum Anschluss des Roboterarms und der Control-Box (siehe Optionen in 16. Technische Spezifikationen auf Seite 85)
- Strom- bzw. Netzkabel für die jeweilige Region
- Dieses Handbuch

1.2. Wichtiger Sicherheitshinweis

Der Roboter ist eine **unvollständige Maschine** (siehe) und daher ist für jede Installation des Roboters eine Risikobewertung erforderlich. Alle Sicherheitshinweise in Kapitel 2. Sicherheit auf Seite 7 sind unbedingt zu befolgen.

1.3. Lesen dieses Handbuchs

Dieses Handbuch enthält Anweisungen für die Installation und Programmierung des Roboters. Das Handbuch gliedert sich in zwei Teile:

Hardware-Installationshandbuch

Mechanische und elektrische Installation des Roboters.

PolyScope-Handbuch

Programmierung des Roboters.

Dieses Handbuch richtet sich an Roboter-Integratoren, die einfache mechanische und elektrische Schulungskenntnisse besitzen und die außerdem mit elementaren Programmierkonzepten vertraut sind.

1.4. Wo Sie weitere Informationen finden

Die Support-Webseite (http://www.universal-robots.com/support) enthält:

- Andere Sprachversionen dieses Handbuchs:
- PolyScope-Handbuch
- Das Service-Handbuch mit Anleitungen zur Fehlerbehebung, Instandhaltung und Instandsetzung des Roboters
- Das Script-Handbuch für erfahrene Benutzer

1.4.1. UR+

Die UR+-Seite (<u>http://www.universal-robots.com/plus/</u>) ist ein Online-Showroom für innovative Produkte, um Ihre UR-Roboter-Anwendung Ihren Bedürfnissen anzupassen. Sie finden alles Notwendige an einem Ort - von Anbaugeräten und Zubehör bis Vision-Kameras und Software. Alle Produkte sind für die Integration mit UR-Robotern getestet und genehmigt und garantieren einfache Inbetriebnahme, zuverlässigen Betrieb, ein tolles Bedienerlebnis und einfache Programmierung. Sie können die Webseite auch dazu nutzen, um dem UR + Entwicklerprogramm beizutreten und auf unsere neue Software-Plattform zuzugreifen, die es Ihnen ermöglicht, weitere benutzerfreundliche Produkte für UR-Roboter zu entwickeln.

Teil I

Hardware-Installationshandbuch

2. Sicherheit

2.1. Vorwort

Dieses Kapitel enthält wichtige Sicherheitsinformationen, die vom Integrator von e-Series-Robotern von Universal Robots gelesen und verstanden werden müssen, **bevor** der Roboter zum ersten Mal eingeschaltet wird.

In diesem Kapitel sind die ersten Teilabschnitte allgemein. In den sich anschließenden Teilabschnitten werden gezielt technische Angaben behandelt, die sich auf das Einstellen und Programmieren des Roboters beziehen. Kapitel 3. Sicherheitsrelevante Funktionen und Schnittstellen auf Seite 17 beschreibt und definiert sicherheitsrelevante Funktionen, die insbesondere für kollaborative Anwendungen relevant sind.

Die Anweisungen und Hinweise in Kapitel 3. Sicherheitsrelevante Funktionen und Schnittstellen auf Seite 17 sowie in Abschnitt 2.7. Risikobewertung auf Seite 12 sind von besonderer Bedeutung.

Es ist von großer Wichtigkeit, dass alle Montageanweisungen und Anleitungen der übrigen Kapitel und Handbuchteile beachtet und befolgt werden.

Insbesondere zu beachten sind Texte im Zusammenhang mit Warnsymbolen.

HINWEIS

Universal Robots schließt jedwede Haftung aus, wenn der Roboter (Arm-Kontrolleinheit und/oder Teach Pendant) beschädigt, verändert oder auf bestimmte Weise manipuliert wird. Universal Robots kann nicht für Schäden am Roboter oder anderen Geräten haftbar gemacht werden, wenn diese durch Programmierfehler oder eine Fehlfunktion des Roboters verursacht wurden.

2.2. Gültigkeit und Verantwortung

Die Informationen in diesem Handbuch decken jedoch nicht ab, wie eine vollständige Roboteranwendung konzipiert, installiert oder betrieben wird und darüber hinaus auch nicht alle peripheren Geräte, die die Sicherheit des kompletten Systems beeinflussen können. Das komplette System muss gemäß den Sicherheitsanforderungen aus den Normen und Vorschriften des Landes konzipiert und installiert werden, in dem der Roboter installiert wird.

Die Integratoren von Universal Robots-Robotern der e-Serie sind verantwortlich dafür, sicherzustellen, dass die geltenden Sicherheitsbestimmungen und -vorschriften ihres Landes beachtet werden und dass hohe Gefährdungsrisiken in der kompletten Roboteranwendung vermieden werden. Dies beinhaltet, beschränkt sich jedoch nicht auf:

- Durchführung einer Risikobewertung für das komplette Robotersystem
- Kopplung von anderen Maschinen und zusätzlichen Sicherheitsbauteilen, wenn durch Risikobewertung definiert

UNIVERSAL ROBOTS

- Einrichtung der angemessenen Sicherheitseinstellungen in der Software
- · Sicherstellung, dass der Benutzer keine Sicherheitsmaßnahmen verändert
- · Validierung, dass das gesamte Robotersystem korrekt konzipiert und installiert ist
- Spezifizierung der Nutzungsanweisungen
- Kennzeichnung der Roboterinstallation mit relevanten Schildern und Angaben von Kontaktinformationen des Integrators
- Sammlung aller Unterlagen in einer technischen Dokumentation, einschließlich der Risikobewertung und dieses Handbuchs

2.3. Haftungsbeschränkung

Die Sicherheitsangaben in diesem Handbuch sind nicht als Zusicherung durch UR zu betrachten, dass der industrielle Manipulator keine Verletzungen oder Schäden verursachen wird, selbst wenn alle Sicherheitsanweisungen eingehalten werden.

2.4. Warnsymbole in diesem Handbuch

Die nachstehenden Symbole stehen für die Benennungen der unterschiedlichen Gefahrenebenen, die in diesem Handbuch vorkommen. Die gleichen Warnsignale werden auch am Produkt verwendet.

WARNUNG

Dies weist auf eine unmittelbare Gefährdungssituation durch Elektrizität hin, die, wenn nicht vermieden, zum Tod oder schweren Verletzungen führen kann.

WARNUNG

Dies weist auf eine unmittelbare Gefährdungssituation hin, die, wenn nicht vermieden, zum Tod oder schweren Verletzungen führen kann.

WARNUNG

Dies weist auf eine potentielle Gefährdungssituation durch Elektrizität hin, die, wenn nicht vermieden, zu Verletzungen oder größeren Geräteschäden führen kann.

WARNUNG

Dies weist auf eine potentielle Gefährdungssituation hin, die, wenn nicht vermieden, zu Verletzungen oder großen Geräteschäden führen kann.

WARNUNG

Dies weist auf eine potentiell gefährdende, heiße Oberfläche hin, die bei Berührung Verletzungen verursachen kann.

VORSICHT

Dies weist auf eine Gefährdungssituation hin, die, wenn nicht vermieden, zu Geräteschäden führen kann.

2.5. Allgemeine Warnungen und Sicherheitshinweise

Dieser Abschnitt enthält allgemeine Warnhinweise und Vorsichtsmaßnahmen, die in verschiedenen Teilen des Handbuchs erneut vorkommen und erklärt werden können. Wiederum andere Warnungen und Sicherheitshinweise finden sich im gesamten Handbuch wieder.

WARNUNG

Stellen Sie sicher, dass der Roboter und alle elektrischen Geräte den Spezifikationen und Warnungen entsprechend installiert werden, die in den Kapiteln 5. Mechanische Schnittstelle auf Seite 27 und stehen.

WARNUNG

- 1. Vergewissern Sie sich, dass der Roboterarm und das Werkzeug/Anbauteil ordnungsgemäß und fest angeschraubt sind.
- 2. Gewährleisten Sie, dass ausreichend Platz vorhanden ist, damit sich der Roboterarm frei bewegen kann.
- 3. Stellen Sie sicher, dass die Sicherheitsmaßnahmen und / oder Roboter-Sicherheitskonfigurationsparameter, wie in der Risikobewertung festgelegt, eingestellt wurden, um die Programmierer, Anwender und umstehende Personen zu schützen.
- 4. Tragen Sie bei der Arbeit mit dem Roboter keine weite Kleidung oder Schmuck. Langes Haar muss bei der Arbeit mit dem Roboter zurückgebunden sein.
- 5. Verwenden Sie den Roboter nicht, falls er Schäden aufweist (z. B. gelöste, defekte oder entfernte Gelenkkappen).
- Falls die Software einen Fehler meldet, drücken Sie sofort den Not-Aus-Schalter, notieren Sie die Umstände, die zu dem Fehler geführt haben, stellen Sie die zugehörigen Fehlercodes im Protokollbildschirm fest und wenden Sie sich an Ihre Lieferfirma.
- 7. Schließen Sie keine Sicherheitsausrüstung an Standard-E/A an. Verwenden Sie nur sicherheitsbezogene E/A.
- 8. Stellen Sie sicher, dass Sie die richtigen Installationseinstellungen verwenden (z. B. Roboterwinkel, Masse in TCP, TCP-Offset und Sicherheitskonfiguration). Speichern und laden Sie die Installationsdatei zusammen mit dem Programm.
- 9. Die Freedrive-Funktion sollte nur bei Installationen verwendet werden, in denen die Risikobewertung dies zulässt.
- 10. Werkzeuge/Anbauteile und Hindernisse dürfen keine scharfen Kanten oder Klemmpunkte haben.
- 11. Ermahnen Sie alle Personen, nicht mit den Händen und dem Gesicht in Reichweite eines in Betrieb befindlichen oder in Betrieb gesetzten Roboters zu gelangen.
- 12. Achten Sie auf Roboterbewegung, wenn Sie das Teach-Pendant verwenden.
- 13. Sofern durch die Risikobewertung entsprechend festgestellt, darf der Sicherheitsbereich des Roboters nicht betreten und der Roboter nicht berührt werden, wenn das System in Betrieb ist.
- 14. Das Kombinieren verschiedener Maschinen kann Gefahren erhöhen oder neue Gefahren schaffen. Führen Sie stets eine Gesamtrisikobewertung für die komplette Installation durch. Abhängig vom bewerteten Risiko können verschiedene Grade der funktionellen Sicherheit angesetzt werden; wenn in diesem Sinne unterschiedliche Sicherheits- und Not-Aus-Funktionsgrade notwendig sind, entscheiden Sie sich stets für den höchsten Funktionsgrad. Es

ist stets erforderlich, die Handbücher für alle in der Installation verwendeten Geräte gelesen und verstanden zu haben.

- 15. Nehmen Sie am Roboter keine Veränderungen vor. Eine Veränderung kann Gefahren schaffen, die für den Integrator unkalkulierbar sind. Jeder autorisierte Wiederzusammenbau hat unter Einhaltung der neuesten Version aller relevanten Service-Handbücher zu erfolgen.
- 16. Wurde der Roboter mit einem zusätzlichen Modul (z. B. Euromap67-Schnittstelle) erworben, lesen Sie zunächst das jeweilige Handbuch zu dem Modul.
- 17. Stellen Sie sicher, dass alle Personen, die den Roboter bedienen, die Lage der Not-Aus-Schalter kennen und eingewiesen sind, diese im Notfall oder in Ausnahmesituationen zu betätigen.

WARNUNG

- Der Roboter und die Kontrolleinheit erzeugen während des Betriebs Wärme. Bedienen und berühren Sie den Roboter nicht, während er sich in Betrieb befindet oder unmittelbar nach dem Betrieb, da ein längerer Kontakt Unwohlsein hervorrufen kann. Sie können die Temperatur auf dem Protokollbildschirm vor dem Umgang oder Berühren des Roboters kontrollieren oder den Roboter ausschalten und eine Stunde abkühlen lassen.
- 2. Stecken Sie niemals einen Finger hinter die innere Abdeckung der Control-Box.

VORSICHT

- 1. Wenn der Roboter mit Maschinen kombiniert wird oder mit Maschinen arbeitet, die den Roboter beschädigen könnten, wird ausdrücklich empfohlen, alle Funktionen und das Roboterprogramm separat zu prüfen.
- 2. Setzen Sie den Roboter keinen permanenten Magnetfeldern aus. Sehr starke Magnetfelder können den Roboter beschädigen.

2.6. Verwendungszweck

Universal Robots-Roboter der e-Serie sind für die industrielle Handhabung von Werkzeugen/Anbaugeräten oder für die Verarbeitung oder Übergabe von Komponenten oder Produkten vorgesehen. Für Details zu den Umgebungsbedingungen, in denen der Roboter eingesetzt werden sollte, siehe Anhänge und .

Universal Robots-Roboter der e-Serie sind mit speziellen sicherheitsrelevanten Funktionen ausgestattet, die für den kollaborativen Betrieb, also für den Betrieb des Roboters ohne Zäune und/oder zusammen mit einem Menschen konzipiert sind.

Der kollaborative Betrieb ist nur für ungefährliche Anwendungen vorgesehen, bei denen die komplette Anwendung einschließlich des Werkzeugs/Anbaugeräts, Werkstücks, der Hindernisse und anderer Maschinen laut Risikobewertung der jeweiligen Anwendung frei von erheblichen Gefahrenquellen ist.

Jede Nutzung oder Anwendung, die von dem vorgesehenen Verwendungszweck abweicht, wird als unzulässige Zweckentfremdung erachtet. Dies beinhaltet, beschränkt sich jedoch nicht auf:

- Nutzung in potentiell explosionsgefährdeten Umgebungen
- Nutzung in medizinischen und lebenswichtigen Anwendungen
- Nutzung vor der Durchführung einer Risikobewertung
- Nutzung außerhalb der technischen Spezifikationen
- Nutzung als Steighilfe
- Betrieb außerhalb der zulässigen Betriebsparameter

WARNUNG

- Verwenden Sie diesen Industrieroboter nur in Übereinstimmung mit dem im Benutzerhandbuch angegebenen Verwendungszweck und gemäß der angegebenen Daten.
- Das Produkt ist nicht für den Einsatz in explosionsgefährdeten Bereichen oder Umgebungen ausgelegt oder vorgesehen.
- Das Produkt ist nicht für medizinische Anwendungen mit Kontakt oder Nähe zu Patienten ausgelegt oder vorgesehen.
- Jegliche Verwendung oder Anwendung, die von der beabsichtigten Verwendung, den Spezifikationen und Zertifizierungen abweicht, ist verboten, da dies Tod, Körperverletzung und/oder Sachschäden zur Folge haben kann.

UNIVERSAL ROBOTS LEHNT AUSDRÜCKLICH JEGLICHE AUSDRÜCKLICHE ODER STILLSCHWEIGENDE GARANTIE DER EIGNUNG FÜR JEGLICHE MISSBRÄUCHLICHE VERWENDUNG AB.

2.7. Risikobewertung

Zu den wichtigsten Aufgaben eines Integratorss gehört die Risikobewertung. In vielen Ländern ist dies gesetzlich vorgeschrieben. Der Roboter selbst ist eine unvollständige Maschine, da die Sicherheit der Roboterinstallation davon abhängt, wie der Roboter integriert wird (z. B. Werkzeug/Anbaugerät, Hindernisse und andere Maschinen). Es wird empfohlen, dass der Integrator für die Durchführung der Risikobewertung ISO 12100 und ISO 10218-2 nutzt. Im Übrigen kann die technische Spezifikation ISO/TS 15066 als zusätzliche Orientierung verwendet werden. Die Risikobewertung durch den Integrator hat alle Arbeitsabläufe über die gesamte Lebensdauer der Roboteranwendung hinweg zu berücksichtigen, einschließlich, aber nicht beschränkt auf:

- Anlernen (Teaching) des Roboters während der Einrichtung und Entwicklung der Roboterinstallation
- Fehlersuche und Wartung
- Normalbetrieb der Roboterinstallation

Eine Risikobewertung muss durchgeführt werden, **bevor** der Roboterarm zum ersten Mal eingeschaltet wird. Ein Teil der durch den Integrator durchzuführenden Risikobewertung ist, die richtigen Sicherheitskonfigurationseinstellungen sowie die Notwendigkeit zusätzlicher Not-Aus-Schalter und/oder andere für die spezifische Roboteranwendung erforderlichen Schutzmaßnahmen zu identifizieren.

Die Festlegung der richtigen Sicherheitskonfigurationseinstellungen ist ein zentraler Inhalt bei der Entwicklung kollaborierender Roboteranwendungen. Siehe Kapitel 3. Sicherheitsrelevante Funktionen und Schnittstellen auf Seite 17 und Teil Teil II PolyScope-Handbuch auf Seite 97 für detaillierte Informationen.

Einige sicherheitsrelevante Funktionen sind speziell für kollaborative Roboteranwendungen ausgelegt. Diese Funktionen sind über die Sicherheitskonfigurationseinstellungen konfigurierbar und besonders relevant, wenn es um spezifische Risiken in der Risikobewertung durch den Integrator geht:

- Kraft und Leistungsbegrenzung: Diese wird verwendet, um Klemmkräfte und -spannungen in Bewegungsrichtung für den Fall einer Kollision zwischen dem Roboter und dem Bediener zu reduzieren.
- Drehmomentbegrenzung: Diese wird verwendet, um hohe Übergangsenergien und Stoßkräfte bei Kollisionen zwischen Roboter und Bediener durch Verringern der Robotergeschwindigkeit zu reduzieren.
- Begrenzung von Gelenk, Ellbogen und der Werkzeug-/Anbaugeräteposition: Wird insbesondere dazu verwendet, um die Risiken für bestimmte Körperteile zu reduzieren. Zum Beispiel, um Bewegungen in Richtung Kopf und Hals zu vermeiden.
- Begrenzung der Werkzeug-/Anbaugeräteausrichtung: Wird insbesondere dazu verwendet, um Risiken im Zusammenhang mit bestimmten Bereichen und Funktionen des Werkzeugs/Anbaugeräts oder Werkstücks zu verringern. Zum Beispiel, um zu vermeiden, dass scharfkantige Gegenstände den Bediener gefährden.
- **Geschwindigkeitsbegrenzung**: Wird insbesondere dazu verwendet, eine niedrigere Geschwindigkeit des Roboterarms zu gewährleisten.

Der Integrator ist gehalten, den unbefugten Zugang zu der Sicherheitskonfiguration durch einen Passwortschutz zu verhindern.

Eine Risikobewertung kollaborierender Roboteranwendungen ist für Kontaktpunkte erforderlich, die beabsichtigt sind und/oder bei denen die Gefahr einer relativ vorhersehbaren Zweckentfremdung besteht. In dieser Bewertung müssen folgende Punkte berücksichtigt werden:

- Schweregrad der einzelnen, möglichen Kollisionen
- Wahrscheinlichkeit des Auftretens einzelner, möglicher Kollisionen
- Möglichkeiten zur Vermeidung einzelner, möglicher Kollisionen

Ist der Roboter in einer nichtkollaborierenden Roboteranwendung installiert, bei der die Gefahrenquellen oder Risiken anhand der integrierten sicherheitsbezogenen Funktionen (z. B. bei Verwendung eines gefährlichen Werkzeugs/Anbaugeräts) nicht hinreichend beseitigt bzw. verringert werden können, so muss die Risikobewertung des Integrators auf die Notwendigkeit zusätzlicher Schutzmaßnahmen hinauslaufen (z. B. eine Sicherungsvorrichtung zum Schutz des Bedieners während der Einrichtung und Programmierung).

Universal Robots hat untenstehende, potentiell bedeutende Gefährdungen als Gefahren erkannt, die vom Integrator zu beachten sind. Bei einer speziellen Roboterinstallation können andere erhebliche Risiken vorhanden sein.

- 1. Risiko von offenen Wunden durch scharfe Kanten oder Ecken am Werkzeug/Anbaugerät oder an der Werkzeug-/Anbaugeräteverbindung.
- 2. Risiko von offenen Wunden durch scharfe Kanten oder Ecken an Hindernissen in der Nähe des Roboters.
- 3. Risiko von Blutergüssen durch Kontakt mit dem Roboter.
- 4. Risiko von Verstauchungen oder Knochenbrüchen zwischen einer schweren Nutzlast und einer harten Oberfläche.
- 5. Auswirkungen als Folge lockerer Schrauben, die den Roboterarm oder das Werkzeug/Anbauteil halten.
- 6. Risiko durch Teile, die aus dem Werkzeug/Anbaugerät fallen, beispielsweise aufgrund einer unzureichenden Klemmung oder Stromunterbrechung.
- 7. Fehler durch unterschiedliche Not-Aus-Schalter für unterschiedliche Maschinen.
- 8. Fehler durch nicht autorisierte Änderungen an den Sicherheitskonfigurationsparametern.

Informationen über Nachlaufzeiten und Nachlaufwege finden Sie in Kapitel 3. Sicherheitsrelevante Funktionen und Schnittstellen auf Seite 17 und in Anhang.

2.8. Lagebewertung vor der ersten Verwendung

Folgende Tests müssen durchgeführt werden, bevor Sie den Roboter zum ersten Mal benutzen bzw. jedes Mal, nachdem Änderungen vorgenommen wurden. Stellen Sie sicher, dass alle Sicherheitseingänge und -ausgänge ordnungsgemäß und korrekt verbunden sind. Testen Sie, ob alle angeschlossenen Sicherheitseingänge und -ausgänge funktionieren, einschließlich aller zusammen mit Maschinen oder Robotern verwendeten Geräte. Dies beinhaltet folgende Maßnahmen:

- Prüfung der Not-Aus-Schalter und Auslösung des Roboterstopps bzw. der Bremswirkung.
- Schutzstopp-Eingangstest auf Einfrieren der Roboterbewegung. Wurde ein Schutzstopp-Reset konfiguriert, ist zu prüfen, ob er vor der erneuten Bewegungsaufnahme aktiviert werden muss.
- Prüfung des Initialisierungsbildschirms, um zu testen, ob der Reduzierte Modus ein Umschalten vom Sicherheitsmodus auf den reduzierten Modus zulässt.
- Prüfung, ob der Betriebsmodus den Betriebsmodus umschaltet (siehe Symbol in der rechten, oberen Ecke der Benutzeroberfläche).
- Prüfung, ob der Drei-Stellungs-Zustimmschalter gedrückt werden muss, um Bewegungen im

manuellen Modus zu ermöglichen und ob der Roboter mit reduzierter Drehzahlsteuerung arbeitet.

- Prüfung, ob der Ausgang für die Notabschaltung des Systems in der Lage ist, das System in einen sicheren Status zu versetzen.
- Prüfung, ob das System die Ausgänge für Roboterbewegung, Roboter stoppt nicht, Reduzierter Modus und Nicht-reduzierter Modus tatsächlich erkennt.

2.9. Notabschaltung

Betätigen Sie den Not-Aus-Schalter, um alle Roboterbewegungen unverzüglich zu stoppen.

Nach IEC 60204-1 und ISO 13850 gelten Not-Aus-Vorrichtungen nicht als Schutzausstattung. Sie sind vielmehr ergänzende Schutzmaßnahmen und nicht dafür gedacht, Verletzungen zu verhindern.

Aus der Risikobewertung der Roboter-Anwendung sollte hervorgehen, ob weitere Not-Aus-Schalter benötigt werden. Not-Aus-Schalter müssen den Anforderungen der IEC 60947-5-5-(siehe Abschnitt) entsprechen.

2.10. Bewegung ohne Antriebskraft

Im unwahrscheinlichen Fall einer Notfallsituation können Sie ein erzwungenes Backdrive anwenden, bei dem Sie das/die Robotergelenk/e bewegen müssen, aber das Einschalten des Roboters ist entweder unmöglich oder unerwünscht.

Für einen erzwungenen Backdrive müssen Sie den Roboterarm kräftig drücken oder ziehen, um das Gelenk zu bewegen. Jede Gelenkbremse verfügt über eine Rutschkupplung, mit der eine Bewegung bei hohem Zwangsdrehmoment ermöglicht wird.

Das erzwungene Backdrive ist nur für Notfälle gedacht.

3. Sicherheitsrelevante Funktionen und Schnittstellen

3.1. Vorwort

Universal Robots e-Series-Roboter sind mit einer Reihe von eingebauten Sicherheitsfunktionen sowie Sicherheits-E/A und digitalen/analogen Steuersignalen von oder zu elektrischen Schnittstellengruppen ausgestattet, die dem Anschluss an andere Geräte und an zusätzliche Schutzgeräte dienen. Jede Sicherheitsfunktion und Schnittstelle wird gem. EN ISO13849-1:2008 (siehe Kapitel für Zertifizierungen) überwacht. Die Überwachung dieser Funktionen geschieht mit Performance Level d (PLd) in einer Kategorie 3-Architektur.

Siehe Kapitel 22. Sicherheitskonfiguration auf Seite 119 in Abschnitt Teil II PolyScope-Handbuch auf Seite 97 für die Konfiguration der Sicherheitsfunktionen sowie Ein- und Ausgänge in der Benutzerschnittstelle. Siehe Kapitel für eine Anleitung zum Anschließen von Sicherheitsgeräten an die E/A.

HINV 1.	WEIS Die Verwendung und Konfiguration von Sicherheitsfunktionen und Schnittstellen müssen die Verfahren zur Risikobewertung für jede Roboteranwendung berücksichtigen. (siehe Kapitel 2. Sicherheit auf Seite 7 Abschnitt 2.7. Risikobewertung auf Seite 12)
2.	Erkennt der Roboter einen Fehler im Sicherheitssystem (z. B. ein durchtrenntes Kabel im Notabschaltung-Stromkreis oder eine überschrittene Sicherheitsgrenze), so wird ein Stopp der Kategorie 0 eingeleitet.
3.	Die Stoppdauer muss bei der Risikobewertung für Anwendungen berücksichtigt werden.

WARNUNG

- 1. Die Verwendung von Sicherheitskonfigurationsparametern, die von denen in der Risikobewertung des Integrators abweichen, können in Gefährdungen und Risiken resultieren, die sich nicht angemessen und hinreichend beseitigen bzw. verringern lassen.
- 2. Stellen Sie sicher, dass Werkzeuge und Greifer entsprechend verbunden sind, so dass bei einer Unterbrechung der Stromversorgung keine Gefährdungen auftreten können.
- 3. Verwenden Sie die Spannung 12 V vorsichtig, da ein Programmierfehler zu einem Spannungswechsel auf 24 V führen kann, was zur Beschädigung der Geräte und zu einem Brand führen könnte.
- 4. Anbaugeräte sind durch das UR-Sicherheitssystem nicht geschützt. Die Wirkungsweise eines Anbaugerätes und/oder dessen Verbindungskabel wird nicht überwacht.

3.2. Stoppkategorien

Je nach den Umständen kann der Roboter drei Arten von Stopp-Kategorien (gemäß IEC 60204-1 ausführen. Diese Kategorien sind in der folgenden Tabelle beschrieben:

Stoppkategorie	Beschreibung
0	Roboter durch die sofortige Trennung der Stromversorgung anhalten.
1	Roboter auf geordnete und kontrollierte Weise anhalten Stromversorgung wird getrennt, sobald der Roboter anhält.
2	*Roboter mit Energie für Antriebe anhalten; Bahnverlauf wird beibehalten. Antriebsenergie wird beibehalten, auch nachdem der Roboter anhält.

* Universal Robots-Stopps der Kategorie 1 und 2 sind im Verlauf als SS1- oder SS2-Stopps nach IEC 61800-5-2 beschrieben.

3.3. Konfigurierbare Sicherheitsfunktionen

Die Sicherheitsfunktionen in Robotern von Universal Robots (wie in der Tabelle unten aufgeführt) sind dafür zuständig, das Robotersystem zu steuern, d. h. den Roboter inkl. des Werkzeugs/Anbaugeräts. Die Roboter-Sicherheitsfunktionen dienen dazu, Risiken durch das Robotersystem anhand der Risikobewertung zu verringern. Positionen und Geschwindigkeiten sind gegenüber der Roboterbasis relativ.

Sicherheitsfunktion	Beschreibung
Gelenkpositionsbegrenzung	Bestimmt den oberen und unteren Grenzwert für die zulässigen Gelenkpositionen.

Sicherheitsfunktion	Beschreibung
Gelenkgeschwindigkeitsbegrenzung	Bestimmt einen oberen Grenzwert für die Gelenkbeschleunigung.
Sicherheitsebenen	Definiert Ebenen im Raum, die die Roboterposition begrenzen. Sicherheitsebenen begrenzen entweder nur das Werkzeug/Anbaugerät oder das Werkzeug/Anbaugerät mit dem Ellbogen.
Werkzeugausrichtung	Definiert zulässige Ausrichtungsgrenzen für das Werkzeug.
Geschwindigkeitsgrenzen	Begrenzt die Höchstgeschwindigkeit des Roboters. Die Geschwindigkeit wird am Ellbogen, am Werkzeug/Anbaugeräteflansch und in der Mitte der benutzerdefinierten Werkzeug/Anbaugeräteposition begrenzt.
Kraftbegrenzung	Begrenzt das maximale Moment, das vom Roboterwerkzeug/Anbaugerät und Ellbogen in Klemmsituationen aufgebracht wird. Die Kraft ist am Werkzeug/Anbaugerät, Ellbogenflansch und in der Mitte der benutzerdefinierten Werkzeug/Anbaugeräteposition begrenzt.
Drehmomentbegrenzung	Begrenzt das maximale Drehmoment des Roboters.
Energiebegrenzung	Begrenzt die mechanische Leistungskraft des Roboters.
Nachlaufzeitbegrenzung	Begrenzt die maximale Zeitdauer, die der Roboter nach einem Schutzstopp pausiert.
Nachlaufstreckenbegrenzung	Begrenzt den maximalen Nachlaufweg des Roboters nach einem Schutzstopp.

Bei der Risikobewertung für Anwendungen ist es erforderlich, die Stoppdauer einzubeziehen, d. h. die Zeit bis zum Stillstand, nachdem ein Stopp eingeleitet wurde. Um diesen Prozess abzuschwächen, können die Sicherheitsfunktionen *Nachlaufzeitbegrenzung* und *Nachlaufwegbegrenzung* verwendet werden.

Diese Sicherheitsfunktionen verringern die Geschwindigkeit der Roboterbewegung dynamisch auf eine Weise, dass er stets innerhalb der Grenzwerte zum Stillstand kommt. Die Grenzen für die Gelenkpositionen, für die Sicherheitsebenen und für die Werkzeug-/Anbaugeräteausrichtung beziehen den erwarteten Nachlaufweg ein, d. h. die Roboterbewegung verlangsamt sich, bevor der Grenzwert erreicht ist.

Die Funktionssicherheit kann wie folgt zusammengefasst werden:

Sicherheitsfunktion	Toleranz	Performance Level (PL)	Kategorie
Notabschaltung	-	d	3
Schutzstopp	-	d	3
Gelenkpositionsbegrenzung	5°	d	3
Gelenkgeschwindigkeitsbegrenzung	1,15 °/s	d	3
Sicherheitsebenen	40 mm	d	3

UNIVERSAL ROBOTS

Sicherheitsfunktion	Toleranz	Performance Level (PL)	Kategorie
Werkzeugausrichtung	3 °	d	3
Geschwindigkeitsgrenzen	50 mm/s	d	3
Kraftbegrenzung	25 N	d	3
Drehmomentbegrenzung	3 kg m/s	d	3
Energiebegrenzung	10 W	d	3
Nachlaufzeitbegrenzung	50 ms	d	3
Nachlaufstreckenbegrenzung	40 mm	d	3
Safe Home	1,7 °	d	3

WARNUNG

Bei der Kraftbegrenzungsfunktion gibt es zwei Ausnahmen, die beim Einrichten einer Roboteranwendung zu beachten sind (Abb. 4.1). Wenn sich der Roboter streckt, kann der Kniegelenk-Effekt bei niedrigen Geschwindigkeiten zu hohen Kräften in radialer Richtung vom Basisflansch führen. Auch wenn sich das Werkzeug-/Anbaugerät in der Nähe der Basis um den Basisflansch herum bewegt, können bei niedrigen Geschwindigkeiten hohe Hebelkräfte wirken. Die Quetschgefahr kann dadurch verringert werden, dass Hindernisse in diesen Bereichen entfernt werden, der Roboter anders platziert wird oder eine Kombination von Sicherheitsebenen und Gelenkgrenzen festgelegt wird, die eine Bewegung des Roboters in diesem Teil seines Wirkungsbereichs verhindern.

WARNUNG

Wird der Roboter in Applikationen mit handgeführten Linearbewegungen verwendet, muss das Tempolimit auf maximal 250 mm/s für das Werkzeug-/Anbaugerät und den Ellbogen festgeschrieben werden, es sei denn, die Risikobewertung zeigt, dass höhere Geschwindigkeiten akzeptabel sind. Dies verhindert schnelle Bewegungen des Roboter-Ellbogens in der Nähe von Singularitäten.

4.1: Aufgrund der physikalischen Eigenschaften des Roboterarms erfordern bestimmte Arbeitsbereiche besondere Aufmerksamkeit wegen Quetschgefahr. Dazu gehört ein Bereich (links) bei radialen Bewegungen, wenn das Handgelenk 1 mindestens 800 mm von der Basis des Roboters entfernt ist. Der andere Bereich (rechts) befindet sich bei Tangentialbewegung innerhalb von 300 mm vom Basisflansch des Roboters.

Der Roboter verfügt auch über folgende Sicherheitseingänge:

Sicherheitseingang	Beschreibung
Not-Aus-Schalter	Führt einen Stopp der Kategorie 1 (IEC 60204-1) aus und informiert andere Maschinen über den <i>System-Notabschaltungsausgang</i> , falls dieser definiert ist. Ein Stopp wird in allem ausgelöst, was mit dem Ausgang verbunden ist.
Roboter-NotHalt	Führt mittels Control-Box-Eingang einen Stopp der Kategorie 1 (IEC 60204-1) aus und informiert andere Maschinen über den <i>System-</i> <i>Notabschaltungsausgang</i> , falls dieser definiert ist.
System-NotHalt	Führt einen Stopp der Kategorie 1 (IEC 60204-1) nur für den Roboter in allen Modi aus und hat Vorrang vor allen anderen Befehlen.
Schutzstopp	Führt einen Stopp der Kategorie 2 (IEC 60204-1) in allen Modis aus, außer bei Verwendung eines Drei-Stellungs-Zustimmschalters und einer Betriebsartenwahl - dann kann der Schutzstopp im manuellen Modus so eingerichtet werden, dass dieser nur im Automatikmodus funktioniert.
Automatikmodus- Schutzstopp	Führt einen Stopp der Kategorie 2 (IEC 60204-1) NUR im Automatikmodus aus. Die <i>Automatikmodus-Schutzabschaltung</i> kann nur gewählt werden, wenn ein Dreistufiger Zustimmschalter konfiguriert und installiert ist.
Schutz-Reset	Kehrt aus dem <i>Schutzstopp-Status</i> zurück, wenn eine steigende Flanke im Schutz-Reset-Eingang auftritt.
Reduzierter Modus	Leitet das Sicherheitssystem zur Übernahme der Begrenzungswerte des <i>Reduzierten Modus</i> .

Sicherheitseingang	Beschreibung
Drei-Stellungs- Zustimmschalter	Löst einen Stopp der Kategorie 2 (IEC 60204-1) aus, wenn der Zustimmschalter vollständig gedrückt oder vollständig losgelassen wird (nur im manuellen Modus). Der Dreistufige Zustimmschalter löst einen Stopp aus, wenn ein Eingang LOW geschaltet wird. Dieser bleibt von einem Schutz-Reset unberührt.
Betriebsart	Umschalten der Betriebsmodi. Der Roboter befindet sich im Automatikmodus, wenn der Eingang LOW ist und im Manuellen Modus, wenn der Eingang HIGH ist.
Automatic Mode Safeguard Reset	Kehrt aus dem Automatikmodus-Schutzstopp-Status zurück, wenn im Automatikmodus eine steigende Flanke im Schutz-Reset-Eingang auftritt.

Für Schnittstellen mit anderen Maschinen verfügt der Roboter über die folgenden Sicherheitsausgänge:

Sicherheitsausgang	Beschreibung
System-NotHalt	Ist dieser Logikpegel LOW, so ist der <i>Notabschaltung-Eingang</i> LOW oder der Not-Aus-Schalter ist gedrückt.
Roboter bewegt sich	Ist dieser Logikpegel HIGH, bewegt sich kein Gelenk des Roboterarms um mehr als 0,1 rad/s.
Roboter stoppt nicht	Logikpegel HIGH, wenn der Roboter aufgrund einer Notabschaltung oder eines Schutzstopps angehalten wurde oder im Begriff ist anzuhalten. Ansonsten Logikpegel LOW.
Reduzierter Modus	Logikpegel LOW, wenn sich das Sicherheitssystem in Reduzierten Modus befindet.
Nicht Reduzierter Modus	Logikpegel LOW, wenn sich das System NICHT im Reduzierten Modus befindet.
Safe Home	Logikpegel HIGH, wenn sich der Roboter in der konfigurierten Safe Home- Position befindet.

Alle Sicherheits-E/A sind zweikanalig, d. h. sie sind sicher, wenn der Logikpegel LOW ist (z. B. der Not-Aus-Stopp ist bei Logikpegel LOW aktiv).

3.4. Sicherheitsfunktion

Das Sicherheitssystem agiert, indem es alle Sicherheitsgrenzen auf Überschreitungen prüft bzw. ob eine Notabschaltung oder ein Schutzstopp ausgelöst ist. Reaktionen des Sicherheitssystems sind

Auslösung	Reaktion
NotHalt	Stoppkategorie 1.
Schutzstopp	Stoppkategorie 2.
Grenzwertverletzung	Stoppkategorie 0.
3. Sicherheitsrelevante Funktionen und Schnittstellen

Auslösung	Reaktion
Fehlererkennung	Stoppkategorie 0.

HINWEIS

Wenn das Sicherheitssystem einen Fehler oder eine Verletzung erkennt, werden alle Sicherheitsausgänge auf LOW zurückgesetzt.

3.5. Betriebsarten

Normalmodus und Reduzierter Modus

Das Sicherheitssystem verfügt über zwei konfigurierbare Modi:: **Normal** und **Reduziert**. Für jeden dieser zwei Modi können Sicherheitsgrenzen konfiguriert werden. Der Reduzierte Modus ist aktiv, wenn sich das Roboterwerkzeug/Anbaugerät auf der "Reduzierter-Modus"-Seite einer **Reduzierten Modus auslösen**-Ebene befindet oder durch einen Sicherheitseingang ausgelöst wird.

Verwendung einer Ebene zum Auslösen des reduzierten Modus: Bewegt sich der Roboter von der Seite des reduzierten Modus der Auslöserebene zurück zur "Normaler Modus"-Seite, gibt es eine 20mm-Zone um die Auslöserebene, in der die Grenzwerte des normalen und des reduzierten Modus erlaubt sind. Dies verhindert ein Flackern im Sicherheitsmodus, wenn sich der Roboter direkt am Grenzwert befindet.

Verwendung eines Eingangs zum Auslösen des reduzierten Modus:: Wird ein Eingang verwendet (um den reduzierten Modus beispielsweise zu starten oder anzuhalten), können bis zu 500 ms verstreichen, bis die Grenzwerte des neuen Modus übernommen werden. Dies kann beim Wechsel vom reduzierten Modus zum Normalmodus oder beim Wechsel vom Normalmodus zum Reduzierten Modus passieren. Dadurch kann der Roboter beispielsweise die Geschwindigkeit der neuen Sicherheitsgrenzen übernehmen.

Wiederherstellungsmodus

Wird ein Sicherheitsgrenzwert überschritten, muss das Sicherheitssystem neu gestartet werden. Befindet sich das System beim Start jenseits einer Sicherheitsgrenze (z. B. jenseits der Positionsgrenze eines Gelenks), wird der besondere Wiederherstellungsmodus aktiviert. Im Wiederherstellungsmodus ist es nicht möglich, Programme für den Roboter auszuführen. Der Roboterarm kann jedoch mit dem Freedrive-Modus oder über den Bewegen-Tab in PolyScope (siehe Teil Teil II PolyScope-Handbuch auf Seite 97 PolyScope-Handbuch) von Hand wieder zurück in seinen zulässigen Wirkungsbereich bewegt werden. Die Sicherheitsgrenzwerte des Wiederherstellungsmodus sind:

Sicherheitsfunktion	Grenzwert
Gelenkgeschwindigkeitsbegrenzung	30 °/s
Geschwindigkeitsgrenzen	250 mm/s
Kraftbegrenzung	100 N
Drehmomentbegrenzung	10 kg m/s

Sicherheitsfunktion	Grenzwert
Energiebegrenzung	80 W

Das Sicherheitssystem veranlasst einen Stopp der Kategorie 0, falls einer dieser Grenzwerte überschritten wird.

WARNUNG

Die Grenzwerte der Gelenkposition, der Sicherheitsebenen und der Werkzeug-/Anbaugeräteausrichtung sind im Wiederherstellungsmodus deaktiviert. Lassen Sie beim Zurückbewegen des Roboterarms in seinen zulässigen Wirkungsbereich äußerste Vorsicht walten.

4. Transport

Der Roboter und die Control-Box werden als kalibrierte Einheit ausgeliefert. Eine Trennung der beiden Komponenten würde eine Neukalibrierung erforderlich machen.

Transportieren Sie den Roboter nur in seiner Originalverpackung. Bewahren Sie das Verpackungsmaterial an einem trockenen Ort auf, für den Fall, dass Sie den Roboter später noch einmal umziehen möchten.

Beim Transport des Roboters von der Verpackung zur Aufstellfläche, heben Sie beide Rohre des Roboterarms gleichzeitig an. Halten Sie den Roboter in Stellung, bis alle Montageschrauben am Fußflansch des Roboters sicher festgezogen sind.

Heben Sie die Control-Box am Griff an.

WARNUNG

- Achten Sie darauf, dass Sie Ihren Rücken etc. beim Heben der Geräte nicht überlasten. Verwenden Sie geeignete Hebegeräte. Alle regionalen und nationalen Richtlinien der Lastenhandhabung sind zu befolgen. Universal Robots kann nicht für Schäden haftbar gemacht werden, die durch den Transport der Geräte verursacht wurden.
- 2. Stellen Sie sicher, dass der Roboter gemäß der Montageanleitung in Kapitel 5. Mechanische Schnittstelle auf Seite 27 montiert wird.

5. Mechanische Schnittstelle

5.1. Vorwort

Dieser Abschnitt beschreibt die Montage-Grundlagen der Teile des Robotersystems. Die Anweisungen für die elektrische Installation in Kapitel sind zwingend zu beachten.

5.2. Wirkungsbereich des Roboters

Der Wirkungsbereich des Roboters erstreckt sich bis zu 900 mm vom Basisgelenk. Bitte beachten Sie bei der Auswahl eines Aufstellungsortes für den Roboter unbedingt das zylindrische Volumen direkt über und unter der Basis. Eine Bewegung des Werkzeugs in der Nähe des zylindrischen Volumens sollte vermieden werden, da sich die Robotergelenke schnell bewegen müssten, obwohl sich das Werkzeug nur langsam bewegt. Dadurch arbeitet der Roboter ineffizient und eine Durchführung der Risikobewertung ist schwieriger.

5.3. Montage

Roboterarm

Der Roboterarm wird mithilfe von vier M8Schrauben (Festigkeitsklasse 8.8) und vier 8,5 mm Öffnungen im Basisflansch des Roboters montiert.

WARNUNG

Vergewissern Sie sich, dass der Roboterarm ordnungsgemäß und sicher verankert ist. Eine instabile Montage kann zu Unfällen führen.

Befestigung des Roboterarms

Abbildung 6.1 zeigt die Stelle, an der die Löcher zu bohren und die Schrauben zu montieren sind. Darüber hinaus ist ein genaues Gegenstück der Basis als Zubehörteil verfügbar.

1. Montieren Sie den Roboter auf einer stabilen, vibrationsfreien Oberfläche, die mindestens dem Zehnfachen des normalen Drehmoments des Basisflanschgelenks und mindestens dem Fünffachen des Gewichts des Roboterarms standhält.

Wird der Roboter auf einer linearen Achse oder einer sich bewegenden Plattform montiert, dann sollte die Beschleunigung der sich bewegenden Montagebasis sehr niedrig sein. Eine hohe Beschleunigung kann einen Sicherheitsstopp des Roboters auslösen.

- 2. Ziehen Sie die Schrauben mit 10 Nm Drehmoment an.
- 3. Verwenden Sie die beiden vorgesehenen Ø8 Löcher (mit Stift), um den Roboterarm ordnungsgemäß neu zu positionieren.

WARNUNG

Schalten Sie den Roboterarm ab, um einen unerwarteten Start während der Montage und Demontage zu verhindern.

Um den Roboterarm abzuschalten:

- 1. Drücken Sie den Power-Knopf am Teach Pendant, um den Roboter auszuschalten.
- 2. Ziehen Sie den Stecker des Netzkabels aus der Steckdose.
- 3. Lassen Sie dem Roboter 30 Sekunden Zeit, um gespeicherte Energie zu entladen.

VORSICHT

Montieren Sie den Roboter in einer Umgebung, die der IP-Schutzart entspricht. Der Roboter darf nicht in einer Umgebung betrieben werden, die die IP-Schutzart für Roboter (IP54), Teach Pendant (IP54) oder Control-Box (IP44) überschreitet.

Surface on which the robot is fitted 5±1 న 0.05 4 x Ø 8.4 5 120 2 6 0 Ø8 FG8 +0.030 +0.008 *√*8.5 min. \bigotimes X

IR

UNIVERSAL ROBOTS

6.1: Löcher zur Montage des Roboters. Verwenden Sie vier M8 Schrauben. Alle Maßangaben sind in mm.

Werkzeug

Der Werkzeugflansch des Roboters verfügt über vier Löcher mit M6-Gewinde zur Befestigung des Werkzeugs am Roboter. Die M6-Schrauben mit Festigkeitsklasse 8.8 müssen mit Drehmoment 8 Nm angezogen werden. Für eine akkurate Werkzeugpositionierung verwenden Sie einen Stift in dem vorgesehenen Ø6-Loch. Abb. 6.2 zeigt die Abmessungen und ein Lochbild des Werkzeugflanschs. Empfohlen wird die Verwendung eines radialen Langlochs für den Stift, um eine übermäßige Krafteinwirkung zu vermeiden und dennoch eine genaue Positionierung einzuhalten. Verwenden Sie zur Montage des Werkzeugs keine Schrauben, die länger als 8 mm sind. Sehr lange M6-Schrauben können Druck auf den Boden des Werkzeugflanschs ausüben und einen Kurzschluss im Roboter verursachen.

WARNUNG

- 1. Vergewissern Sie sich, dass das Werkzeug ordnungsgemäß und sicher festgeschraubt ist.
- 2. Vergewissern Sie sich, dass das Werkzeug so konstruiert ist, dass es keine Gefährdung darstellt, indem sich beispielsweise unerwartet ein Teil löst.
- 3. Die Montage des Werkzeugs mit M6-Schrauben, die länger als 8 mm sind, kann Abdrücke im Werkzeugflansch hinterlassen und zu irreparablen Schäden bis hin zum Austausch des Gelenks führen.

6.2: Der Werkzeugausgangsflansch (ISO 9409-1-50-4-M6) befindet an der Stelle, an der das Werkzeug an der Spitze des Roboters montiert wird. Alle Maßangaben sind in mm.

Control-Box

Die Control-Box kann an der Wand angebracht oder auf den Boden gestellt werden. Für einen ausreichenden Luftstrom wird ein Abstand von 50 mm zu beiden Seiten der Control-Box benötigt.

Teach-Pendant

Das Teach Pendant kann an eine Wand oder an die Control-Box gehängt werden. Stellen Sie sicher, dass das Kabel keine Stolpergefahr darstellt.

Zusätzliche Halterungen für Control-Box und Teach Pendant können Sie nach Bedarf erwerben.

WARNUNG

- 1. Stellen Sie sicher, dass die Control-Box, das Teach Pendant und die Kabel nicht in direkten Kontakt mit Flüssigkeit kommen. Eine feuchte Control-Box kann tödliche Verletzungen zur Folge haben.
- 2. Stellen Sie das Teach Pendant (IP54) und die Control-Box (IP44) in einer Umgebung auf, die der IP-Schutzart entspricht.

5.4. Maximale Nutzlast

Die maximal zulässige Nutzlast des Roboterarms hängt von der *Schwerpunktverschiebung* ab, siehe Abbildung 6.3. Die Abweichung des Schwerpunktes ist definiert als der Abstand zwischen der Mitte des Werkzeugflanschs und dem Schwerpunkt der angehängten Nutzlast.

6.3: Beziehung zwischen der maximal zulässigen Nutzlast und der Schwerpunktverschiebung.

6. Elektrische Schnittstelle

6.1. Vorwort

Dieses Kapitel beschreibt alle elektrischen Schnittstellengruppen des Roboterarms in der Control-Box. Für den Großteil der **E/A** sind Beispiele angegeben. Der Begriff **E/A** bezieht sich sowohl auf digitale als auch analoge Steuersignale von oder zu einer der u.g. elektrischen Schnittstellengruppen.

- Netzanschluss
- Roboterverbindung
- Controller-E/A
- Werkzeug E/A
- Ethernet

6.1.1. Halterung für Control-Box

Auf der Unterseite der E/A-Schnittstellengruppen existiert eine Konsole mit Ports, die zusätzliche Verbindungen (siehe Abb. unten) ermöglicht. Die Unterseite der Control-Box enthält dafür eine mit einer Kappe versehenen Öffnung für müheloses Anschließen (siehe 6.2. Ethernet unten). Der Mini-Display-Port unterstützt Monitore mit Display-Port und erfordert ein aktives Mini-Display zu einem DVI- oder HDMI-Konverter für den Anschluss von Monitoren mit DVI/HDMI-Schnittstelle. Passive Konverter arbeiten nicht mit DVI/HDMI-Anschlüssen zusammen.

Sicherungsanforderung ist eine Miniflachsicherung mit UL-Kennzeichnung und einer maximalen Strombelastbarkeit von 10 A und einer Mindestspannung von 32 V

6.2. Ethernet

Die Ethernet-Schnittstelle kann für folgende Zwecke verwendet werden:

- MODBUS, EtherNet/IP und PROFINET (siehe Teil Teil II PolyScope-Handbuch auf Seite 97).
- Remote-Zugriff und Remote-Steuerung.

Um das Ethernet-Kabel zu verbinden, wird es durch die Öffnung an der Unterseite der Control-Box geführt und in den Ethernet-Anschluss an der Unterseite der Konsole eingesteckt. Ersetzen Sie die Öffnung an der Unterseite der Control-Box mit einer entsprechenden Kabelverschraubung, wenn Sie das Kabel mit dem Ethernet-Anschluss verbinden.

Die elektrischen Spezifikationen finden Sie in der untenstehenden Tabelle.

Parameter	Min	Тур	Max	Einheit
Kommunikationsgeschwindigkeit	10	-	1000	MB/s

6.3. Elektrische Warnungen und Sicherheitshinweise

Beachten Sie die folgenden Warnhinweise für alle oben genannten Schnittstellengruppen, zusätzlich zu denen für die Erstellung und Installation einer Roboteranwendung.

Alle Spannungen und Ströme sind DC (Gleichstrom), sofern nicht anders angegeben.

WARNUNG

- Schließen Sie Sicherheitssignale niemals an eine SPS an, bei der es sich nicht um eine Sicherheits-SPS mit entsprechendem Sicherheitsniveau handelt. Eine Nichtbeachtung dieser Warnung kann schwere Verletzungen oder den Tod zur Folge haben, da die Sicherheitsfunktion umgangen werden kann. Sicherheitsschnittstellensignale sind von den normalen E/A-Schnittstellensignalen getrennt zu verlegen.
- Alle sicherheitsrelevanten Signale sind redundant aufgebaut (zwei unabhängige Kanäle). Halten Sie die beiden Kanäle getrennt, damit eine einzelne Störung nicht zum Verlust der Sicherheitsfunktion führen kann.
- 3. Einige E/A innerhalb der Control-Box können entweder für normale oder sicherheitsrelevante E/A konfiguriert werden. Lesen und verstehen Sie den kompletten Abschnitt 6.4. Controller-E/A auf der gegenüberliegenden Seite.

WARNUNG

- Stellen Sie sicher, dass alle nicht wassergeschützten Geräte trocken bleiben. Sollte Wasser in das Produkt gelangt sein, trennen Sie alle Stromversorgungen bzw. schalten Sie diese ab und kontaktieren Sie Ihren Universal Robots-Serviceanbieter.
- 2. Verwenden Sie nur die mit dem Roboter bereitgestellten Originalkabel. Setzen Sie den Roboter nicht für Anwendungen ein, bei denen die Kabel Biegungen ausgesetzt sind.
- 3. Nullanschlüsse sind mit GND (Erdung) bezeichnet und werden an die Schirmung des Roboters und an die Control-Box angeklemmt. Alle markierten Erdungsanschlüsse (GND) sind nur für die Stromversorgung und Signalgebung konzipiert. Verwenden Sie die mit Erdungssymbolen gekennzeichneten M6-Schraubverbindungen als PE (Schutzerde) im Inneren der Control-Box. Die Nennstromstärke des Masseverbinders sollte nicht unter der höchsten Stromstärke des Systems liegen.
- 4. Bei der Anbringung von Schnittstellenkabeln zu den Roboter-E/A ist äußerste Sorgfalt geboten. Die Metallplatte im Boden ist für Schnittstellenkabel und Anschlüsse bestimmt. Entfernen Sie die Platte, bevor Sie die Löcher bohren. Stellen Sie sicher, dass vor der erneuten Montage der Platte alle Späne entfernt worden sind. Denken Sie daran, die korrekten Verschraubungsgrößen zu verwenden.

VORSICHT

- Der Roboter wurde gemäß internationaler IEC-Standards auf EMV (elektromagnetische Verträglichkeit) getestet. Störsignale mit höheren Pegeln als denen, die in den spezifischen IEC-Normen angegeben sind, können ein unerwartetes Verhalten des Roboters verursachen. Sehr hohe Signalpegel oder übermäßige Aussetzung können den Roboter dauerhaft beschädigen. EMV-Probleme treten häufig bei Schweißvorgängen auf und werden in der Regel im Protokoll erfasst. Universal Robots kann nicht für Schäden haftbar gemacht werden, die im Zusammenhang mit EMV-Problemen verursacht wurden.
- 2. E/A-Kabel zwischen der Control-Box und anderen Maschinen/Geräten dürfen nicht länger als 30 m sein, es sei denn, es wurden zusätzliche Prüfungen durchgeführt.

6.4. Controller-E/A

Der E/A in der Control-Box lässt sich für eine breite Palette an Geräten verwenden, einschl. von pneumatischen Relais, SPS und Not-Aus-Schaltern.

Die folgende Abbildung zeigt die Anordnung der elektrischen Schnittstellengruppen in der Control-Box.

Ebenso können Sie den horizontalen Digitaleingangsblock DI8-DI11 (siehe Abbildung unten) als Quadratur-Encoder für Förderbandverfolgung (siehe 6.4.1. Gemeinsame Spezifikationen für alle Digital-E/A auf der nächsten Seite) für diese Art des Eingangs verwenden.

Die Bedeutung der unten aufgeführten Farbschemata sind zu beachten und einzuhalten.

Gelb mit roter Schrift	Vorgesehen für Sicherheitssignale
Gelb mit schwarzer Schrift	Für die Sicherheit konfigurierbar
Grau mit schwarzer Schrift	Digital-E/A für allgemeine Zwecke
Grün mit schwarzer Schrift	Analog-E/A für allgemeine Zwecke

In der grafischen Benutzeroberfläche (GUI) können Sie **konfigurierbare E/A** als **sicherheitsrelevante E/A** oder **Universal-E/A** einrichten (siehe Teil Teil II PolyScope-Handbuch auf Seite 97).

6.4.1. Gemeinsame Spezifikationen für alle Digital-E/A

Dieser Abschnitt definiert die elektrischen Spezifikationen für den folgenden 24 V Digital-E/A der Control-Box.

- Sicherheits-E/A.
- Konfigurierbare E/A.
- Universal-E/A.

Installieren Sie den Roboter mit der für alle drei Eingangsarten gleichen elektrischen Spezifikation.

Es ist möglich, den digitalen E/A mit einer internen 24-V-Spannungsversorgung oder mit einer externen Stromversorgung zu betreiben, indem der Klemmenblock **Spannung** entsprechend konfiguriert wird. Dieser Block besteht aus vier Klemmen. Die oberen beiden (PWR und GND) sind der 24-V- und Erdungsanschluss der internen 24-V-Stromversorgung. Die unteren beiden Klemmen (24 V und 0 V) des Blocks umfassen den 24V-Eingang der E/A-Versorgung. Die Standardkonfiguration verwendet die interne Spannungsversorgung (siehe unten).

Falls die Stromstärke nicht ausreicht, kann eine externe Spannungsversorgung angeschlossen werden (siehe unten).

Die elektrischen Spezifikationen für eine interne und externe Spannungsversorgung sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
Interne 24-V-Spannungsversorgung					
[PWR - GND]	Spannung	23	24	25	V
[PWR - GND]	Strom	0	-	2*	А
Externe 24 V Eingangsanforderungen					
[24V - 0V]	Spannung	20	24	29	V
[24V - 0V]	Strom	0	-	6	А

* 3,5 A für 500 ms oder 33 % Einschaltdauer.

Die digitalen E/A erfüllen IEC 61131-2. Die elektrischen Spezifikationen sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
Digitalausgänge					
[COx / DOx]	Strom*	0	-	1	А
[COx / DOx]	Spannungsabfall	0	-	0.5	V
[COx / DOx]	Kriechstrom	0	-	0.1	mA
[COx / DOx]	Funktion	-	PNP	-	Тур
[COx / DOx]	IEC 61131-2	-	1A	-	Тур
Digitaleingänge					
[EIX/SIX/CIX/DIX]	Spannung	-3	-	30	V
[EIX/SIX/CIX/DIX]	AUS-Bereich	-3	-	5	V
[EIX/SIX/CIX/DIX]	EIN-Bereich	11	-	30	V
[EIX/SIX/CIX/DIX]	Strom (11 - 30 V)	2	-	15	mA
[EIX/SIX/CIX/DIX]	Funktion	-	PNP +	-	Тур
[EIx/SIx/CIx/DIx]	IEC 61131-2	-	3	-	Тур

Für ohmsche Lasten oder induktive Lasten von maximal 1 H.

HINWEIS

Als **konfigurierbar** wird ein E/A bezeichnet, der entweder als sicherheitsrelevanter oder als allgemeiner E/A konfiguriert wird.

6.4.2. Sicherheits-E/A

Dieser Abschnitt beschreibt die speziellen Sicherheitseingänge (gelbe Klemmen mit roter Schrift) und als Sicherheits-E/A konfigurierte E/A. Folgen Sie bei allen digitalen E/A den gängigen Spezifikationen in Abschnitt 6.4.1. Gemeinsame Spezifikationen für alle Digital-E/A auf der vorherigen Seite. Sicherheitsausrüstung und -geräte müssen unter Einhaltung der Sicherheitsanweisungen und der Risikobewertung installiert werden, siehe Kapitel 2. Sicherheit auf Seite 7.

Alle Sicherheits-E/A sind paarweise (redundant) angeordnet und müssen als zwei getrennte Systeme beibehalten werden. Eine einzelne Störung führt nicht zum Verlust der Sicherheitsfunktion.

Es existieren zwei Typen von permanenten Sicherheitseingängen:

- Roboter-NotHalt Nur für Notabschaltungsgeräte
- Schutzstopp Für Schutzvorrichtungen

Der funktionale Unterschied wird im Folgenden erklärt.

	NotHalt	Schutzstopp
Roboterbewegung stoppt	Ja	Ja
Programmausführung	Pausiert	Pausiert

Copyright © 2009-2021 by Universal Robots A/S. Alle Rechte vorbehalten.

	NotHalt	Schutzstopp
Strom für Antrieb	Aus	Ein
Reset	Manuell	Automatisch oder manuell
Einsatzhäufigkeit	Nicht häufig	Jeder Durchlauf bis nicht häufig
Erfordert erneute Initialisierung	Nur Lösen der Bremse	Nein
Stoppkategorie (IEC 60204-1)	1	2
Performance Level der		
Überwachungsfunktion (ISO 13849-1)	PLd	PLd

Verwenden Sie den konfigurierbaren E/A dazu, um zusätzliche E/A-Sicherheitsfunktionen wie z. B. einen Notabschaltungsausgang einzurichten. Das Einrichten konfigurierbarer E/A für Sicherheitsfunktionen erfolgt über die GUI, siehe Teil Teil II PolyScope-Handbuch auf Seite 97).

WARNUNG

- Schließen Sie Sicherheitssignale niemals an eine SPS an, bei der es sich nicht um eine Sicherheits-SPS mit entsprechendem Sicherheitsniveau handelt. Eine Nichtbeachtung dieser Warnung kann schwere Verletzungen oder den Tod zur Folge haben, da die Sicherheitsfunktion umgangen werden kann. Sicherheitsschnittstellensignale sind von den normalen E/A-Schnittstellensignalen getrennt zu verlegen.
- 2. Alle sicherheitsrelevanten E/A sind redundant aufgebaut (zwei unabhängige Kanäle). Halten Sie die beiden Kanäle getrennt, damit eine einzelne Störung nicht zum Verlust der Sicherheitsfunktion führen kann.
- 3. Sicherheitsfunktionen müssen vor der Inbetriebnahme des Roboters überprüft werden. Sicherheitsfunktionen sind regelmäßig zu überprüfen.
- 4. Die Roboterinstallation muss diesen Spezifikationen entsprechen. Eine Nichtbeachtung dieser Warnung kann schwere Verletzungen oder den Tod zur Folge haben, da die Sicherheitsfunktionen umgangen werden können.

OSSD-Signale

Alle konfigurierten und permanenten Sicherheitseingänge werden gefiltert, um die Verwendung von OSSD-Sicherheitsgeräten mit Impulslängen unter 3 ms zu ermöglichen. Der Sicherheitseingang wird jede Millisekunde abgetastet und der Zustand des Eingangs wird durch das am häufigsten auftretende Eingangssignal innerhalb der letzten 7 Millisekunden bestimmt. OSSD-Pulse auf den Sicherheitsausgängen sind beschrieben in Teil Teil II PolyScope-Handbuch auf Seite 97.

Standardmäßige Sicherheitskonfiguration

Der Roboter wird mit einer Standardkonfiguration für den Betrieb ohne zusätzliche Sicherheitsausstattung ausgeliefert (siehe Abbildung unten).

Not-Aus-Schalter anschließen

In den meisten Roboteranwendungen ist die Nutzung einer oder mehrerer zusätzlicher Not-Aus-Schalter erforderlich. Die folgende Abbildung veranschaulicht die Verwendung mehrerer Not-Aus-Schalter.

Notabschaltung mit mehreren Maschinen teilen

Eine gemeinsame Notabschaltungsfunktion zwischen dem Roboter und anderen Maschinen kann mittels Konfiguration der folgenden E/A -Funktionen in der GUI eingerichtet werden. Der Notabschaltungseingang des Roboters kann nicht für gemeinsame Verwendung eingesetzt werden. Falls mehr als zwei UR Roboter oder andere Maschinen verbunden werden sollen, ist eine Sicherheits-SPS nötig, um die Notabschaltungssignale zu steuern.

- Konfigurierbares Eingangspaar: Externe Notabschaltung.
- Konfigurierbares Eingangspaar: System-Notabschaltung.

Die folgende Abbildung zeigt zwei UR Roboter, die sich die Notabschaltungsfunktion teilen. In diesem Beispiel werden die konfigurierten E/A CI0-CI1 und CO0-CO1 verwendet.

Schutzstopp mit automatischer Wiederaufnahme

Ein Beispiel für ein einfaches Schutzstopp-Gerät ist ein Türschalter, der den Roboter stoppt, wenn die Tür geöffnet wird (siehe Abbildung unten).

Diese Konfiguration trifft nur auf Anwendungen zu, bei denen der Betreiber die Tür nicht passieren und hinter sich schließen kann. Mit dem konfigurierbaren E/A wird eine Reset-Taste vor der Tür eingerichtet, um den Roboterbetrieb wiederaufzunehmen.

Ein weiteres Beispiel für eine automatische Fortsetzung ist die Verwendung einer Sicherheitsschaltmatte oder eines Sicherheits-Laser-Scanners (siehe unten).

WARNUNG

1. Der Roboter setzt den Betrieb automatisch fort, sobald das Signal wiederhergestellt ist. Verwenden Sie diese Konfiguration nicht, wenn das Signal von der Sicherheitszone aus wiederhergestellt werden kann.

Schutzstopp mit Reset-Taste

Ist die Schutzstopp-Schnittstelle mit einem Lichtvorhang verbunden, so ist ein Reset von außerhalb der Sicherheitszone erforderlich. Die Reset-Taste benötigt zwei Kanäle. In diesem Beispiel ist der E/A CI0-CI1 für die Reset-Taste konfiguriert, siehe unten.

Drei-Stellungs-Zustimmschalter

Die Abbildung unten zeigt, wie ein Drei-Stellungs-Zustimmschalter anzuschließen ist. Siehe Abschnitt 21. Betriebsmodus-Auswahl auf Seite 115 für weitere Informationen über Dreistufige Zustimmschalter.

HINWEIS

Mehrere Dreistufige Zustimmschalter werden vom Sicherheitssystem von Universal Robots nicht unterstützt.

HINWEIS

Die beiden Eingangskanäle für den 3-Stellungs-Zustimmschalter haben eine Abweichungstoleranz von 1 s.

Betriebsmodus-Schalter

Die Abbildung unten zeigt einen Betriebsmodus-Schalter. Siehe Abschnitt 21.1. Betriebsmodi auf Seite 115 für weitere Informationen zu den Betriebsmodi.

6.4.3. Digital-E/A für allgemeine Zwecke

Dieser Abschnitt beschreibt die allgemeinen 24 V E/A (graue Klemmen) und die nicht fest als Sicherheits-E/A konfigurierten aber konfigurierbaren E/A (gelbe Klemmen mit schwarzer Schrift). Die gängigen Spezifikationen im Abschnitt 6.4.1. Gemeinsame Spezifikationen für alle Digital-E/A auf Seite 36 sind zu beachten.

Die allgemeinen E/A können für die direkte Steuerung von Geräten wie pneumatischen Relais oder für die Kommunikation mit einer SPS verwendet werden. Alle Digitalausgänge können automatisch deaktiviert werden, wenn die Programmausführung gestoppt wird, siehe Teil Teil II PolyScope-Handbuch auf Seite 97. In diesem Modus ist der Ausgang immer LOW, wenn kein Programm läuft. Beispiele dafür finden Sie in den folgenden Unterabschnitten. In den Beispielen werden reguläre Digitalausgänge verwendet. Solange er nicht für eine Sicherheitsfunktion konfiguriert werden soll, kann jeder beliebige konfigurierbare Ausgang verwendet werden.

Last durch Digitalausgang gesteuert

Dieses Beispiel zeigt die Steuerung einer Last über einen Digitalausgang, wenn angeschlossen.

6.4.4. Digitaleingang durch eine Taste

Dieses Beispiel zeigt den Anschluss einer einfachen Taste an einem Digitaleingang.

6.4.5. Kommunikation mit anderen Maschinen oder einer SPS

Der digitale E/A kann verwendet werden, um mit anderen Geräten zu kommunizieren, sofern ein gemeinsamer GND (0V) besteht und die Maschine PNP-Technologie verwendet, siehe unten.

6.4.6. Analog-E/A für allgemeine Zwecke

Die Analog-E/A-Schnittstelle ist die grüne Klemme. Sie wird verwendet, um die Spannung (0 - 10 V) oder den Strom (4 - 20 mA) von und zu anderen Geräten auszugeben oder zu erfassen.

Um höchste Genauigkeit zu erreichen, wird folgendes empfohlen:

- Verwenden Sie die AG-Klemme, die dem E/A am nächsten liegt. Das Paar teilt sich einen gemeinsamen Modus-Filter.
- Verwenden Sie den gleichen GND (0V) für Geräte und die Control-Box. Der Analog E/A ist nicht galvanisch von der Control-Box getrennt.
- Verwenden Sie ein abgeschirmtes Kabel oder verdrillte Doppelkabel. Schließen Sie die Schirmung an den GND-Anschluss der Klemme **SPANNUNG** an.
- Verwenden Sie Geräte im Strommodus. Stromsignale sind weniger anfällig für Störungen.

In der GUI können Sie den Eingangsmodus wählen (siehe Teil Teil II PolyScope-Handbuch auf Seite 97). Die elektrischen Spezifikationen sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
Analogeingang im Strommodus					
[AIX - AG]	Strom	4	-	20	mA
[AIX - AG]	Widerstand	-	20	-	Ohm
[AIX - AG]	Auflösung	-	12	-	Bit
Analogeingang im Spannungsmodus					
[AIX - AG]	Spannung	0	-	10	V
[AIX - AG]	Widerstand	-	10	-	kOhm
[AIX - AG]	Auflösung	-	12	-	Bit
Analogausgang im Strommodus					
[AOx - AG]	Strom	4	-	20	mA
[AOx - AG]	Spannung	0	-	24	V
[AOx - AG]	Auflösung	-	12	-	Bit
Analogausgang im Spannungsmodus					
[AOx - AG]	Spannung	0	-	10	V
[AOx - AG]	Strom	-20	-	20	mA
[AOX - AG]	Widerstand	-	1	-	Ohm
[AOx - AG]	Auflösung	-	12	_	Bit

Verwendung eines Analogausgangs

Dieses Beispiel zeigt, wie ein Fließband mit einem analogen Drehzahl-Steuerungseingang gesteuert werden kann.

Verwenden eines Analogeingangs

Dieses Beispiel zeigt die Verbindung eines Analogsensors.

6.4.7. EIN-/AUS-Remote-Steuerung

Die **EIN-/AUS**-Remote-Steuerung kann verwendet werden, um die Control-Box ein- und auszuschalten, ohne das Teach Pendant zu verwenden. Verwendet wird sie in der Regel dann, wenn

- Wenn das Teach Pendant nicht verfügbar ist.
- eine SPS-Anlage die volle Kontrolle benötigt
- mehrere Roboter gleichzeitig ein- oder ausgeschaltet werden müssen.

Die **EIN-/AUS**-Remote-Steuerung bietet eine 12-V-Hilfsstromversorgung, die aktiv bleibt, wenn die Control-Box ausgeschaltet wird. Der **EIN**-Eingang ist nur für kurzzeitige Aktivierung gedacht und funktioniert in der gleichen Weise wie der **Power**-Knopf. Der **AUS**-Eingang kann nach Belieben gedrückt gehalten werden. Verwenden Sie eine Software-Funktion, um Programme automatisch zu laden und zu starten (siehe Teil Teil II PolyScope-Handbuch auf Seite 97).

Die elektrischen Spezifikationen sind unten angegeben.

Klemmen	Parameter	Min	Тур	Max	Einheit
[12V - GND]	Spannung	10	12	13	V
[12V - GND]	Strom	-	-	100	mA
[ON / OFF]	Inaktive Spannung	0	-	0,5	V
[ON / OFF]	Aktive Spannung	5	-	12	V
[ON / OFF]	Eingangsstrom	-	1	-	mA
[ON]	Einschaltzeit	200	-	600	ms

Remote-Taste "EIN"

Dieses Beispiel zeigt, wie eine Remote-AN-Taste angeschlossen wird.

Remote-Taste "AUS"

Dieses Beispiel zeigt, wie eine Remote-AUS-Taste angeschlossen wird.

VORSICHT

Halten Sie nicht den **EIN**-Eingang oder den **Power**-Knopf gedrückt, da diese die Control-Box ohne Speicherung ausschalten. Verwenden Sie stets den **AUS**-Eingang zum Ausschalten per Fernsteuerung, da dieses Signal das Speichern von Dateien und das problemlose Herunterfahren der Control-Box ermöglicht.

6.5. Netzanschluss

Das Netzkabel an der Control-Box verfügt standardmäßig über einen IEC-Stecker. Verbinden Sie den IEC-Stecker mit einem länderspezifischen Netzstecker oder Netzkabel.

Um den Roboter zu aktivieren, muss die Control-Box mit einer Steckdose und dem IEC C20-Stecker an der Unterseite der Control-Box über ein entsprechendes IEC C19 Kabel verbunden werden (siehe Abbildung unten).

Die Spannungsversorgung weist folgende auf:

- Erdung
- Hauptsicherung
- Fehlerstromeinrichtung

Es wird empfohlen, einen Hauptschalter als einfaches Mittel zur Trennung und Abschaltung aller in der Roboterapplikation befindlichen Geräte zu installieren. Die elektrischen Spezifikationen finden Sie in der untenstehenden Tabelle.

Parameter	Min	Тур	Max	Einheit
Eingangsspannung	100	-	240	VAC
Externe Netzsicherung (@ 100-200 V)	15	-	16	А
Externe Netzsicherung (@ 200-265V)	8	-	16	А
Eingangsfrequenz	47	-	440	Hz
Standby-Leistung	-	-	<1.5	W
Nennbetriebsleistung	90	250	500	W

WARNUNG

- Stellen Sie sicher, dass der Roboter korrekt geerdet ist (elektrische Verbindung zur Masse). Verwenden Sie die nicht genutzten Schauben, die zu den Erdungssymbolen in der Control-Box gehören, um eine gemeinsame Erdung aller Geräte im System zu schaffen. Die Nennstromstärke des Masseverbinders sollte nicht unter der höchsten Stromstärke des Systems liegen.
- Verriegeln Sie alle Stromversorgungen f
 ür die abgeschlossene Roboterinformation w
 ährend des Betriebs und schalten Sie sie ab. Andere Ger
 äte d
 ürfen den Roboter-E/A nicht mit Strom versorgen, wenn das System abgeschaltet ist.
- 4. Stellen Sie sicher, dass alle Kabel korrekt angeschlossen sind, bevor die Control-Box angeschlossen wird. Verwenden Sie stets das originale Stromkabel.

6.6. Roboteranschluss: Roboterkabel

Dieser Unterabschnitt beschreibt den Anschluss eines Roboterarms, der mit einem festen 6 m langen Roboterkabel konfiguriert ist. Informationen zum Anschluss eines Roboterarms, der mit einem Basisflansch-Kabelstecker konfiguriert ist, finden Sie unter 6.7. Roboteranschluss: Basisflanschkabel auf der gegenüberliegenden Seite.

6.6.1. Roboter-Anschlusskabel

Stellen Sie die Verbindung zum Roboter her, indem Sie den Roboterarm mit dem Roboterkabel an die Control-Box anschließen.

Verbinden und sichern Sie das Kabel des Roboters am Anschluss an der Unterseite der Control-Box (siehe Abbildung unten). Drehen Sie den Anschluss zweimal, um sicherzustellen, dass er fest verankert ist, bevor Sie den Roboterarm anstellen.

Drehen Sie den Anschluss nach rechts, um ihn einfacher zu arretieren, nachdem das Kabel angeschlossen wurde.

VORSICHT

Ein unsachgemäßer Anschluss des Roboters kann zu einem Stromverlust des Roboterarms führen.

- Trennen Sie das Roboterkabel nicht, solange der Roboterarm eingeschaltet ist.
- Das originale Roboterkabel darf weder verlängert noch modifiziert werden.

6.7. Roboteranschluss: Basisflanschkabel

Dieser Unterabschnitt beschreibt den Anschluss eines Roboterarms, der mit einem Basisflanschkabelstecker konfiguriert ist. Für Informationen zum Anschluss eines Roboterarms, der mit einem festen 6 m langen Roboterkabel konfiguriert ist, siehe 6.6. Roboteranschluss: Roboterkabel auf der vorherigen Seite.

6.7.1. Basisflanschkabelstecker

Stellen Sie die Verbindung zum Roboter her, indem Sie den Roboterarm mit dem Roboterkabel an die Control-Box anschließen. Das Roboterkabel wird an den Basisflanschkabelstecker und an den Anschluss der Control-Box angeschlossen.

Sie können jeden Anschluss sperren, sobald die Roboterverbindung hergestellt ist.

VORSICHT

Die maximale Länge der Roboterverbindung vom Roboterarm zur Control-Box beträgt 12 m. Ein unsachgemäßer Anschluss des Roboters kann zu einem Stromverlust des Roboterarms führen.

• Verlängern Sie kein 6 m langes Roboterkabel.

HINWEIS

Der direkte Anschluss des Basisflanschkabels an eine Control-Box kann zu Schäden an Geräten oder Eigentum führen.

• Schließen Sie das Basisflanschkabel nicht direkt an die Control-Box an.

6.8. Werkzeug E/A

An den Werkzeugflansch an Gelenk #3 grenzt ein 8-poliger Stecker an, der Strom und Steuersignale für verschiedene Greifer und Sensoren bereitstellt, die an dem Roboter angebracht werden können. Ein geeignetes Industriekabel ist das Lumberg RKMV 8-354. Die acht Adern des Kabels haben unterschiedliche Farben, je nach Funktion.

Dieser Stecker liefert Leistungs- und Steuerungssignale für Greifer und Sensoren, die mit einem bestimmten Roboterwerkzeug verwendet werden. Ein geeignetes Industriekabel ist das hier genannte:

• Lumberg RKMV 8-354.

HINWEIS

Der Werkzeuganschluss muss manuell bis auf ein Maximum von 0,4 Nm angezogen werden.

Die acht Adern des Kabels verfügen über unterschiedliche Farben, je nach Funktion. Siehe nachfolgende Tabelle:

Farbe	Signal	Beschreibung
Rot	GND	Erdung

6. Elektrische Schnittstelle

Farbe	Signal	Beschreibung
Grau	SPANNUNG	0V/12V/24V
Blau	TO0/PWR	Digitalausgäng 0 or 0V/12V/24V
Pink	TO1/GND	Digitalausgänge 1 oder Erdung
Gelb	T10	Digitaleingänge 0
Grün	TI1	Digitaleingänge 1
Weiß	AI2/RS485+	Analog Ein 2 oder RS485+
Braun	AI3/RS485-	Analog Ein 3 oder RS485-

Gehen Sie zum Tool -E/A im Installations-Tab (siehe Teil Teil II PolyScope-Handbuch auf Seite 97), um die interne Spannungsversorgung auf 0 V, 12 V oder 24 V einzustellen. Die elektrischen Spezifikationen sind unten angegeben:

Parameter	Min	Тур	Max	Einheit
Versorgungsspannung im 24-V-Modus	23,5	24	24,8	V
Versorgungsspannung im 12-V-Modus	11,5	12	12,5	V
Versorgungsstrom (Einzel-Pol)*	-	1000	2000**	mA
Versorgungsstrom (Zwei-Pol)*	-	2000	2000	mA
Kapazitive Versorgungslast	-	-	8000***	uF

* Es wird dringend empfohlen, eine Schutzdiode für induktive Lasten zu verwenden.

**Spitze für max. 1 Sekunde, Einschaltdauer max.: 10%. Der Durchschnittsstrom über 10 Sekunden hinaus darf die typische Stromstärke nicht überschreiten.

***Wenn die Stromversorgung des Werkzeugs aktiviert wird, beginnt eine 400 ms Softstartzeit, die eine kapazitive Last von 8000 uF an die Werkzeugstromversorgung beim Start ermöglicht. Das Anbinden einer kapazitiven Last im laufenden Betrieb ist nicht erlaubt.

HINWEIS

Der Werkzeugflansch wird an die Erdung (GND) angeschlossen (wie die rote Ader).

6.8.1. Werkzeugstromversorgung

6.8.2. Stromversorgung

Gehen Sie zum Tool -E/A im Installations-Tab (siehe Teil Teil II PolyScope-Handbuch auf Seite 97), um die interne Spannungsversorgung auf 0 V, 12 V oder 24 V einzustellen.

6.8.3. Doppel-Pin Stromversorgung

Im Doppel-Pin-Modus kann der Ausgangsstrom wie in (6.8. Werkzeug E/A auf Seite 48 Tabelle 2) aufgeführt erhöht werden.

- 1. Tippen Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie in der Liste links Allgemein.
- 3. Tippen Sie auf Werkzeug E/A und wählen Sie die Option Doppel-Pin-Strom.
- 4. Schließen Sie die Kabel Energie (grau) an TO0 (blau) und Erdung (rot) an TO1 (rosa) an.

HINWEIS

Wenn der Roboter eine Notabschaltung ausführt, wird die Spannung für beide Spannungspole auf 0V gesetzt (Spannungsversorgung abgeschaltet).

6.8.4. Digitalausgänge des Werkzeugs

Digitalausgänge unterstützen drei verschiedene Modi:

Betriebsart	Aktiv	Inaktiv
Sinking (NPN)	Low	Öffnen
Sourcing (PNP)	High	Öffnen
Drücken / Ziehen	High	Low

Gehen Sie zum Tool -E/A im Installations-Tab (siehe Teil Teil II PolyScope-Handbuch auf Seite 97), um den Ausgangsmodus je Pol zu konfigurieren. Die elektrischen Spezifikationen sind unten angegeben:

Parameter	Min	Тур	Max	Einheit
Spannung, wenn offen	-0,5	-	26	V
Spannung beim Sinking 1 A	-	0,08	0,09	V

6. Elektrische Schnittstelle

Parameter	Min	Тур	Max	Einheit
Strom beim Sourcing/Sinking	0	1000	1000	mA
Strom durch GND	0	1000	3000*	mA

* Spitze für max. 1 Sekunde, Einschaltdauer max: 10 %. Durchschnittsstrom über 10 Sekunden hinaus darf typische Stromstärke nicht überschreiten.

HINWEIS

Wenn der Roboter eine Notabschaltung ausführt, werden die Digitalausgänge DOO0 und DO1 deaktiviert (HIGH Z).

VORSICHT

Die Digitalausgänge im Werkzeug haben keine Strombeschränkung. Das Überschreiten der vorgegebenen Daten kann zu dauerhafter Beschädigung führen.

Verwendung der Digitalausgänge des Werkzeugs

Dieses Beispiel zeigt die Aktivierung eines Verbrauchers mit Hilfe der internen 12-V- oder 24-V-Stromversorgung. Die Ausgangsspannung beim Tab "E/A" muss definiert werden. Zwischen dem Anschluss SPANNUNG und der Schirmung/Erdung liegt Spannung an, auch wenn der Verbraucher ausgeschaltet ist.

Es wird empfohlen, eine Schutzdiode für induktive Lasten zu verwenden (s. unten).

6.8.5. Digitaleingänge des Werkzeugs

Die Digitaleingänge sind als PNP mit schwachen Pulldown-Widerständen implementiert. Dies bedeutet, dass ein potentialfreier Eingang immer einen niedrigen Wert anzeigt. Die elektrischen Spezifikationen sind unten angegeben.

Parameter	Min	Тур	Max	Einheit
Eingangsspannung	-0,5	-	26	V
Logischer Pegel LOW	-	-	2,0	V
Logischer Pegel HIGH	5,5	-	-	V
Eingangswiderstand	-	47 k	-	Ω

Verwendung der Digitaleingänge des Werkzeugs

Dieses Beispiel zeigt den Anschluss einer einfachen Taste.

6.8.6. Analoger Werkzeugeingang

Die Werkzeug-Analogeingänge sind nicht differenziell und können zu Spannung (0 bis 10 V) oder Strom (4 bis 20 mA) auf dem Tab E/A eingestellt werden, siehe Abschnitt Teil II PolyScope-Handbuch auf Seite 97. Die elektrischen Spezifikationen sind unten angegeben.

Parameter	Min	Тур	Max	Einheit
Eingangsspannung im Spannungsmodus	-0,5	-	26	V
Eingangswiderstand im Bereich 0V bis 10V	-	10,7	-	kΩ
Auflösung	-	12	-	Bit
Eingangsspannung im Strommodus	-0,5	-	5,0	V
Eingangsstrom im Strommodus	-2,5	-	25	mA
Eingangswiderstand im Bereich 4 mA bis 20 mA	-	182	188	Ω
Auflösung	-	12	-	Bit

Zwei Beispiele für die Verwendung eines Digitaleingangs finden Sie im folgenden Unterabschnitt.

VORSICHT

1. Analogeingänge sind im Strommodus nicht gegen Überspannung geschützt. Ein Überschreiten des in den elektrischen Spezifikationen angegebenen Grenzwertes kann zu dauerhafter Beschädigung am Eingang führen.

Verwendung der Analogeingänge des Werkzeugs, nicht differenziell

Dieses Beispiel zeigt die Verbindung eines analogen Sensors mit einem nicht differenziellen Ausgang. Der Ausgang des Sensors kann entweder Strom oder Spannung sein, solange der Eingangsmodus dieses Analogeingangs im Tab E/A entsprechend eingestellt ist.

Hinweis: Prüfen Sie, ob der Sensor mit Spannungsausgang den internen Widerstand des Werkzeugs verfälschen kann. Andernfalls könnte die Messung ungültig sein.

Verwendung der Analogeingänge des Werkzeugs, differenziell

Dieses Beispiel zeigt die Verbindung eines analogen Sensors an einem differenziellen Ausgang. Verbinden Sie den negativen Ausgang mit der Erdung (0V); die Funktionsweise gleicht der eines nicht differenziellen Sensors.

6.8.7. Werkzeugkommunikation-E/A

- Signalanforderungen: RS485-Signale verwenden eine interne, störsichere Bus-Vorspannung (fail-safe biasing). Unterstützt das angeschlossene Gerät diese Störsicherheit nicht, muss die Signalvorspannung im angehängten Werkzeug oder extern durch Hinzufügen von Pull-up-Widerständen zu RS485+ und Pull-Down-Widerständen zu RS485- vorgenommen werden.
- Latenz: Die Latenzzeit von gesendeten Meldungen über den Werkzeuganschluss dauert 2 ms bis 4 ms, gemessen vom Zeitpunkt, zu der die Nachricht auf dem PC geschrieben wird bis zum Startzeitpunkt der Meldung auf dem RS485. Ein Puffer speichert die zum Werkzeuganschluss gesendeten Daten bis zur Ruhemoduszeit. Sobald 1000 Byte empfangen wurden, wird die Mitteilung auf das Gerät geschrieben.

Baud-Raten	9,6k, 19,2k, 38,4k, 57,6k, 115,2k, 1M, 2M, 5M
Stoppbits	1, 2
Parität	Keine; Ungerade; Gerade

7. Wartung und Reparatur

Führen Sie alle Sicht- oder Betriebszustandskontrollen unter Einhaltung aller Sicherheitshinweise in diesem Handbuch durch.

Instandhaltungs- und Instandsetzungsarbeiten sowie Kalibrierungen und Inspektionen sind unter Zuhilfenahme der neuesten Versionen der Wartungshandbücher auf der Support-Website http://www.universal-robots.com/support durchzuführen.

Reparaturarbeiten dürfen nur von Universal Robots oder autorisierten Systemintegratoren durchgeführt werden. Vom Kunden designierte, geschulte Personen können auch Reparaturarbeiten durchführen, sofern sie den im Wartungshandbuch beschriebenen Inspektionsplan befolgen. Im Kapitel 5 des Wartungshandbuchs finden Sie einen vollständigen Inspektionsplan für geschulte Personen

Alle Rücksendungen von Zubehör an Universal Robots sind gemäß den Bedingungen im Wartungshandbuch durchzuführen.

7.1. Sicherheitsanweisungen

Im Anschluss an Instandhaltungs- und Instandsetzungsarbeiten sind Prüfungen durchzuführen, um den erforderlichen Sicherheitsstandard zu gewährleisten. Die gültigen nationalen oder regionalen Arbeitsschutzbestimmungen sind bei diesen Prüfungen zu beachten. Die korrekte Funktionsweise aller Sicherheitsfunktionen ist ebenfalls zu prüfen.

Der Zweck von Wartungs- und Reparaturarbeiten ist es, sicherzustellen, dass das System betriebsfähig bleibt oder, im Falle einer Störung, das System erneut in einen betriebsfähigen Status zu versetzen. Reparaturarbeiten umfassen die Fehlerbehebung und die eigentliche Reparatur selbst.

Bei Arbeiten am Roboterarm oder der Control-Box sind die folgenden Maßnahmen und Warnungen zu beachten.

WARNUNG

- Nehmen Sie keine Änderungen an der Sicherheitskonfiguration der Software vor (z. B.der Kraftbegrenzung). Die Sicherheitskonfiguration wird im PolyScope-Handbuch beschrieben. Werden Sicherheitsparameter verändert, sollte das komplette Robotersystem neu betrachtet werden, d. h. der gesamte Sicherheitsgenehmigungsprozess, einschließlich Risikobewertung, sollte entsprechend aktualisiert werden.
- 2. Tauschen Sie defekte Komponenten mit neuen Komponenten mit denselben Artikelnummern oder gleichwertigen Komponenten aus, die zu diesem Zweck von Universal Robots genehmigt wurden.
- 3. Reaktivieren Sie alle deaktivierten Sicherheitsmaßnahmen unverzüglich nach Abschluss der Arbeit.
- 4. Dokumentieren Sie alle Reparaturen und speichern Sie diese Dokumentation in der technischen Datei für das komplette Robotersystem.

WARNUNG

- Trennen Sie das Netzkabel von der Unterseite der Control-Box, um sicherzustellen, dass er vollständig ausgeschaltet ist. Schalten Sie jede andere Energiequelle ab, die an den Roboterarm oder die Control-Box angeschlossen ist. Ergreifen Sie die nötigen Vorkehrungen, um zu vermeiden, dass andere Personen das System während der Reparaturphase einschalten.
- 2. Prüfen Sie den Erdungsanschluss bevor Sie das System wieder einschalten.
- 3. Beachten Sie ESD-Vorschriften, wenn Teile des Roboterarms oder der Control-Box demontiert werden.
- 4. Vermeiden Sie die Demontage der Stromversorgungen in der Control-Box. In den Stromversorgungen können hohe Spannungen (bis zu 600 V) noch mehrere Stunden nach dem Ausschalten der Control-Box vorliegen.
- 5. Vermeiden Sie das Eindringen von Wasser oder Verunreinigungen in den Roboterarm oder die Control-Box.

7.2. Reinigung

Alltägliche Reinigung

Sie können Staub/Schmutz/Öl am Roboterarm mit einem Tuch und einem der folgenden Reinigungsmittel abwischen: Wasser, Isopropylalkohol, 10 % Ethanolalkohol oder 10 % Naphtha. In seltenen Fällen können sehr kleine Fettmengen am Gelenk sichtbar sein. Dies hat keinen Einfluss auf die Funktion, Verwendung oder Lebensdauer des Gelenks.

Zusätzliche Reinigung

Aufgrund der zunehmenden Relevanz der Hygiene Ihres Roboters empfiehlt UR die Reinigung mit

70 % Isopropylalkohol (Reinigungsalkohol).

- 1. Wischen Sie den Roboter mit einem robusten Mikrofasertuch und 70 % Isopropylalkohol (Reinigungsalkohol) ab.
- 2. Lassen Sie den 70 %igen Isopropylalkohol 5 Minuten lang auf dem Roboter einwirken und reinigen Sie den Roboter dann mit dem Standardreinigungsverfahren.

KEIN BLEICHMITTEL VERWENDEN. Verwenden sie keine Bleichmittel in verdünnten Reinigungslösungen.

7.3. Inspektion

7.3.1. Roboterarm Inspektionsplan

	Zeitrahmen				
	Monatlich	Halbjährlich	Jährlich		
V	×				
V		×			
V		×			
V		×			

V = Sichtprüfung * = Muss auch nach schwerer Kollision überprüft werden

7.3.2. Sichtprüfung Roboterarm

HINWEIS

Die Verwendung von Druckluft zur Reinigung des Roboterarms kann die Komponenten des Roboterarms beschädigen.

• Verwenden Sie zur Reinigung des Roboterarms niemals Druckluft.

HINWEIS

Wenn innerhalb des Garantiezeitraums Schäden an einem Roboter festgestellt werden, wenden Sie sich an den Händler, bei dem der Roboter gekauft wurde.

7.3.3. Control-Box Inspektionsplan

			Zeitrahmen		
			Monatlich	Halbjährlich	Jährlich
1		F	×		
283		F		×	
200		F		×	
4&5	Kabel und Anschluss vom Teach-Pendant überprüfen	V		×	
6		V	×		

V = Sichtprüfung F = Funktionsprüfung

7.3.4. Control-Box Sichtprüfung

- 1. Trennen Sie das Stromkabel von der Control-Box.
- 2. Prüfen Sie, ob sich außerhalb der Control-Box Schmutz/Staub befindet.
 - Bei Bedarf mit ESD-Staubsauger reinigen.

HINWEIS

Die Verwendung von Druckluft zur Reinigung des Innenraums der Control-Box kann Komponenten beschädigen.

• Verwenden Sie keine Druckluft zur Reinigung des Innenraums der Control-Box.

7.3.5. Freedrive Inspektion

- 1. Demontieren Sie das Werkzeug oder legen Sie TCP/Nutzlast/Schwerpunkt gemäß der Werkzeugspezifikationen fest.
- 2. Bewegen des Roboterarms in Freedrive:
 - Drücken und halten Sie auf einem Teach-Pendant die Freedrive-Taste.
 - Drücken Sie auf einem 3PE-Teach-Pendant die 3PE-Taste schnell und leicht und halten Sie sie dann leicht gedrückt.

Standard-TP

3PE TP

3. Ziehen/Schieben Sie den Roboterarm in eine horizontal verlängerte Position und lassen Sie ihn los.

4. Überprüfen Sie, ob der Roboter seine Position beibehalten kann, wenn er nicht bei gedrückter Freedrive-Taste gehalten wird.
8. Entsorgung und Umwelt

Universal Robots e-Series-Roboter sind in Einklang mit den geltenden nationalen Gesetzen, Bestimmungen und Normen zu entsorgen.

Universal Robots e-Series-Roboter werden zum Schutze der Umwelt unter beschränkter Verwendung gefährlicher Stoffe hergestellt, wie in der europäischen RoHS-Richtlinie 2011/65/EU beschrieben. Zu diesen Stoffen zählen Quecksilber, Cadmium, Blei, Chrom VI, polybromierte Biphenyle und polybromierte Diphenylether.

Gebühren für die Entsorgung von und den Umgang mit Elektroabfall der Universal Robots e-Series-Roboter, die auf dem dänischen Markt verkauft werden, werden von Universal Robots A/S vorab an das DPA-System entrichtet. Importeure in Ländern, die der europäischen WEEE-Richtlinie 2012/19/EU unterliegen, sind selbst für ihre Registrierung im nationalen WEEE-Register ihres Landes verantwortlich. Die Gebühr beträgt hierfür in der Regel weniger als 1 €/Roboter. Eine Liste der nationalen Register finden Sie hier: https://www.ewrn.org/national-registers.

Die folgenden Symbole sind am Roboter angebracht, um die Konformität mit den obenstehenden Rechtsvorschriften anzuzeigen:

9. Zertifizierungen

Zertifizierungen von Drittparteien sind freiwillig. Um jedoch Roboterintegratoren den besten Service zu bieten, hat sich Universal Robots dazu entschieden, seine Roboter durch die folgenden, anerkannten Prüfinstitute zertifizieren zu lassen.

Kopien aller Zertifizierungen finden Sie im Kapitel Zertifizierungen

R sum	TÜV NORD	Universal Robots e-Series Roboter sind durch den TÜV NORD, einer nach der Maschinenrichtlinie 2006/42/EG benannten Zertifizierungsstelle in der EU, sicherheitsgeprüft.
	CHINA RoHS	Universal Robots e-Series-Roboter erfüllen China RoHS- Managementtechniken zur Begrenzung von Umweltverschmutzung durch elektronische Informationsprodukte.
€ ^s	KCC Sicherheit	Universal Robots e-Series-Roboter wurden evaluiert und entsprechen den Sicherheitsstandards des KKC-Zeichens.
C	KC-Register	Universal Robots e-Series-Roboter wurden auf ihren Sicherheitsstandard für den Einsatz in einer Arbeitsumgebung evaluiert. Beim Einsatz in häuslichen Umgebungen besteht daher die Gefahr von Funkstörungen.
DELTA	Delta	Universal Robots e-Series-Roboter sind von DELTA leistungsgeprüft.
	Ze	rtifizierungen von Drittanbietern
	Umwelt	Die von unseren Anbietern zur Verfügung gestellten Versandpaletten für Universal Robots e-Series-Roboter erfüllen die dänischen ISMPM-15 Anforderungen an Holzverpackungsmaterial und sind gemäß dieser Bestimmungen gekennzeichnet.
		Hersteller-Prüfzeugnis
R	Universal Robots	Universal Robots e-Series-Roboter unterliegen kontinuierlichen, internen Prüfungen und End-of-Line- Testverfahren. Die UR-Testverfahren werden stetigen Überprüfungen und Weiterentwicklungen unterzogen.

Erklärungen im Einklang mit EU-Richtlinien

Obwohl EU-Richtlinien in erster Linie für Europa von Bedeutung sind, erkennen auch einige Länder außerhalb Europas EU-Erklärungen an oder fordern diese ein. Die europäischen Richtlinien finden Sie auf der offiziellen Homepage: http://eur-lex.europa.eu.

Gemäß der Maschinenrichtlinie werden Universal Robots-Roboter von Universal Robots als unvollständige Maschinen betrachtet und als solche ohne CE-Kennzeichnung ausgeliefert. Sie finden die Einbauerklärung nach der Maschinenrichtlinie finden im Kapitel Erklärungen und Zertifikate

10. Gewährleistung

10.1. Produkt-Gewährleistung

Unbeschadet jeglicher Ansprüche, die der Benutzer (Kunde) gegenüber dem Vertriebshändler oder Einzelhändler geltend machen kann, wird dem Kunden eine Herstellergarantie entsprechend den unten stehenden Bedingungen gewährt:

Wenn neue Geräte und deren Komponenten innerhalb von 12 Monaten (maximal 15 Monate ab Versand) nach Inbetriebnahme Mängel aufgrund von Herstellungs- und/oder Materialfehlern aufweisen, stellt Universal Robots die erforderlichen Ersatzteile bereit, während der Benutzer (Kunde) die Arbeitsstunden für den Austausch der Ersatzteile bereitstellt, wobei Universal Robots das Bauteil entweder durch ein anderes Bauteil austauscht, das dem aktuellen Stand der Technik entspricht, oder repariert. Diese Gewährleistung verliert ihre Gültigkeit, wenn der Gerätedefekt auf eine unsachgemäße Behandlung und/oder die fehlende Einhaltung der Informationen in den Benutzerhandbüchern zurückzuführen ist. Diese Gewährleistung gilt nicht für und erstreckt sich nicht auf Leistungen, die durch den befugten Vertriebshändler oder den Kunden selbst durchgeführt werden (z. B. Aufbau, Konfiguration, Herunterladen von Software). Der Kaufbeleg, aus dem das Kaufdatum hervorgeht, ist als Nachweis für die Gewährleistung erforderlich. Ansprüche im Rahmen der Gewährleistung sind innerhalb von zwei Monaten einzureichen, nachdem der Gewährleistungsmangel aufgetreten ist. Das Eigentumsrecht an Geräten oder Komponenten, die durch Universal Robots ausgetauscht und an Universal Robots zurückgeschickt wurden, geht auf Universal Robots über. Diese Gewährleistung deckt jegliche anderen Ansprüche nicht ab, die durch das oder im Zusammenhang mit dem Gerät entstehen. Nichts in dieser Gewährleistung soll dazu führen, die gesetzlich festgeschriebenen Rechte des Kunden und die Herstellerhaftung für Tod oder Personenschaden durch die Verletzung der Sorgfaltspflicht zu begrenzen oder auszuschließen. Der Gewährleistungszeitraum wird nicht durch Leistungen verlängert, die gemäß den Bestimmungen der Gewährleistung erbracht werden. Sofern kein Gewährleistungsmangel besteht, behält sich Universal Robots das Recht vor, dem Kunden die Austausch- und Reparaturarbeiten in Rechnung zu stellen. Die oben stehenden Bestimmungen implizieren keine Änderungen hinsichtlich der Nachweispflicht zu Lasten des Kunden. Für den Fall, dass ein Gerät Mängel aufweist, haftet Universal Robots nicht für indirekte, zufällige, besondere oder Folgeschäden einschließlich - aber nicht beschränkt auf -Einkommensverluste, Nutzungsausfälle, Produktionsausfälle oder Beschädigungen an anderen Produktionsmaschinen.

Wenn ein Gerät Mängel aufweist, kommt Universal Robots nicht für Folgeschäden oder Verluste auf, wie zum Beispiel Produktionsausfall oder Beschädigungen an anderen Produktionsgeräten.

VORSICHT

Es wird generell empfohlen, höhere Beschleunigungen, als sie für eine bestimmte Anwendung erforderlich sind, zu vermeiden. Hohe Beschleunigungen, insbesondere in Verbindung mit hohen Lasten, können die Lebensdauer des Roboters verkürzen. Für Anwendungen mit kurzen Zykluszeiten und hohen Anforderungen an die Geschwindigkeit wird generell empfohlen, möglichst viele Überblendungen zu verwenden, um glatte Bahnkurven zu gewährleisten, ohne dass hohe Beschleunigungen erforderlich sind.

10.2. Haftungsausschluss

Universal Robots arbeitet weiter an der Verbesserung der Zuverlässigkeit und dem Leistungsvermögen seiner Produkte und behält sich daher das Recht vor, das Produkt ohne vorherige Ankündigung zu aktualisieren. Universal Robots unternimmt alle Anstrengungen, dass der Inhalt dieser Anleitung genau und korrekt ist, übernimmt jedoch keine Verantwortung für jedwede Fehler oder fehlende Informationen.

11. Nachlaufzeit und -strecke

HINWEIS

Sie können benutzerdefinierte Sicherheitsgrenzen für maximale Nachlaufzeit und strecke definieren. Siehe 3.1. Vorwort auf Seite 17 und 22.6. Einstellungen im Menü Sicherheit auf Seite 121.

Werden benutzerdefinierte Einstellungen verwendet, so wird die Geschwindigkeit des Programms dynamisch angepasst, um die ausgewählten Grenzwerte stets einzuhalten.

Die grafischen Daten für Gelenk 0 (Basis, Fuß), Gelenk 1 (Schulter) und Gelenk 2 (Ellbogen) gelten für Nachlaufweg und Stoppdauer:

- Stoppkategorie 0
- Stoppkategorie 1
- Stoppkategorie 2

Der Test an **Gelenk 0** wurde bei einer Horizontalbewegung durchgeführt, d. h. die Drehachse stand senkrecht zum Boden.

Während der Tests von **Gelenk 1** und **Gelenk 2** bewegte sich der Roboter auf einer vertikalen Bahn, d. h. die Drehachsen lagen parallel zum Boden. Der Stopp wurde durchgeführt, während sich der Roboter nach unten bewegte.

Diese unten abgebildeten Werte stellen ein extremes Szenario dar, Ihre Werte werden daher abweichen.

11. Nachlaufzeit und -strecke

0.06

0.04

0.02

speed 33%

speed 66%

Stoppdauer in Sekunden für alle Nutzlasten

speed 100%

speed 100%

speed 66%

Nachlaufweg in Meter für alle Nutzlasten

0.020

0.015

0.010

speed 33%

11. Nachlaufzeit und -strecke

12. Erklärungen und Zertifikate

EU Declaration of Incoporation in accordance with ISO/IEC 17050-1:2010			
Manufacturer	Universal Robots A/S Energivej 25 DK-5260 Odense S Denmark		
Person in the Community Authorized to Compile the Technical File	David Brandt Technology Officer, Research and Development Universal Robots A/S Energivej 25, DK-5260 Odense S		
Description and Identification of the Partially-Completed Machine(s) Product and Function	Industrial robot (multi-axis manipulator with Control Box and Teac Pendant). Function is determined by the completed machine (with end-effector and intended use).		
Model	UR3e, UR5e, UR10e,UR16e (e-Series)		
Serial Number	Starting 20195000000 and higher – Effective 17 August 2019		
Incorporation:	Universal Robots UR3e, UR5e, UR10e and UR16e shall only be put into service upon being integrated into a final complete machine (robot system, cell or application), which conforms with the provisions of the Machinery Directive and other applicable Directives.		
It is declared that the above products, for what is supplied, fulfill the following Directives as detailed below:			
I Machine Directive	The following essential requirements have been fulfilled: 1.1.2,		

I Machine Directive 2006/42/EC	The following essential requirements have been fulfilled: 1.1.2, 1.1.3, 1.1.5, 1.2.1, 1.2.4.3, 1.2.6, 1.3.4, 1.3.8.1, 1.5.1, 1.5.2, 1.5.6, 1.5.10, 1.6.3, 1.7.2, 1.7.4, 4.1.2.3 It is declared that the relevant technical documentation has been compiled in accordance with Part B of Annex VII of the Machinery Directive.
II Low-voltage Directive 2014/35/EU	Reference the LVD and the harmonized standards used below.
III EMC Directive 2014/30/EU	Reference the EMC Directive and the harmonized standards used below.
IV RoHS Directive 2011/65/EU	Reference the RoHS Directive 2011/65/EU.
V WEEE Directive 2012/19/EU.	Reference the WEEE Directive 2012/19/EU.

It is declared that the above products,	for what is supplied,	fulfill the following Directives as
detailed below:		

Reference the harmonized standards used,	(I) EN ISO 10218-1:2011 TUV Nord Cert. 4470814097607 (I) EN ISO 13849-1:2015 TUV Nord Cert. 4420714097610
referred to in Article 7(2) of the MD and LV Directives	(I) EN ISO 13732-1:2008, (I) EN 1037:1995+A1:2008 (I) EN ISO 13849-2:2012, (I) EN ISO 13850:2015
Directive	(II) EN 60204-1:2006/A1:2010, (II) EN 60320-1:2001/A1:2007 (II) EN 60529:1991/A2:2013, (II) EN 60947-5-5:1997/A11:2013
	(III) EN 61000-6-2:2005, (III) EN 61000-6-4:2007/A1:2011
Reference to other technical	(I) ISO/TS 15066 as applicable
standards and specifications used	(II) IEC 60664-1:2007, (II) IEC 60664-5:2007, (II) IEC 61326-3- 1:2008
	(II) IEC 61784-3:2010 (SIL2) ISO 14664-1:2015 (Cleanroom Class
	6 for control assembly with enclosure and Class 5 for UR3e, UR5e,UR10e and UR16e manipulators)
	(III) IEC 60068-2-1:2007, (III) IEC 60068-2-2:2007 (III) IEC 60068-2-27:2008, (III) IEC 60068-2-64:2008

The manufacturer, or his authorized representative, shall transmit relevant information about the partly completed machinery in response to a reasoned request by the national authorities. Approval of full quality assurance system (ISO 9001), by the notified body Bureau Veritas, certificate #DK008850.

Odense Denmark, 17 August 2019 Name: Position/ Title

Universal Robots A/S, Energivej 25, DK-5260 Odense S, Denmark CVR-nr. 29 13 80 60

Milson She

Roberta Nelson Shea Global Technical Compliance Officer

Phone +45 8993 8989 Fax +45 3879 8989 info@universal-robots.com www.universal-robots.com

13. Erklärungen und Zertifikate (übersetzung des Originals)

EU-Konformitätserklärung gemäß ISO/IEC 17050-1:2010				
Hersteller	Universal Robots A/S Energivej 25 DK-5260 Odense S Dänemark			
Person der Gemeinschaft, die für die Zusammenstellung der technischen Datei autorisiert ist	David Brandt Technologiebeauftragter, Forschung und Entwicklung Universal Robots A/S Energivej 25, DK-5260 Odense S			
Beschreibung und Identifizierung der teilweise fertiggestellten Maschine(n) Produkt und Funktion	Industrieroboter (mehrachsiger Manipulator mit Control-Box und Teach-Pendant). Die Funktion wird durch die fertige Maschine (mit Anbaugerät und Verwendungszweck) bestimmt.			
Modell	UR3e, UR5e, UR10e,UR16e (e-Series)			
Seriennummer	Beginnend bei 201795000000 und höher – Gültig ab 17. August 2019			
Inkorporierung:	Die Universal Robots UR3, UR5 und UR10 dürfen erst dann in Betrieb genommen werden, wenn sie in eine endgültige vollständige Maschine (Robotersystem, Zelle oder Anwendung) integriert sind, die den Bestimmungen der Maschinenrichtlinie und anderer anwendbarer Richtlinien entspricht.			
ausgeführten Richtlinien erfüllen:				
I Marshine with the 2000/40/EQ Distributed and an analytic base Aufordam and the fifth 4.4.0				

I Maschinenrichtlinie 2006/42/EG	Die folgenden wesentlichen Anforderungen sind erfüllt: 1.1.2, 1.1.3, 1.1.5, 1.2.1, 1.2.4.3, 1.2.6, 1.3.4, 1.3.8.1, 1.5.1, 1.5.2, 1.5.6, 1.5.10, 1.6.3, 1.7.2, 1.7.4, 4.1.2.3 Es wird erklärt, dass die relevante technische Dokumentation in Übereinstimmung mit Teil B des Anhangs VII der Maschinenrichtlinie erstellt worden ist.	
II Niederspannungsrichtlinie 2014/35/EU	Siehe die Niederspannungsrichtlinie und die verwendeten harmonisierten Normen unten.	
III EMV-Richtlinie 2014/30/EU	Siehe die Niederspannungsrichtlinie und die verwendeten harmonisierten Normen unten.	
IV RoHS-Richtlinie 2011/65/EU	Siehe die RoHS-Richtlinie 2011/65/EU.	
V WEEE-Richtlinie 2012/19/EU.	Siehe die WEEE-Richtlinie 2012/19/EU.	

es wird erklart, dass obenstehende Produkte entsprechend der Lieferung die unten ausgeführten Richtlinien erfüllen:				
Siehe die verwendeten(I)harmonisierten Normen,(I)	I) EN ISO 10218-1:2011 TUV Nord Cert. 4470814097607 I) EN ISO 13849-1:2015 TUV Nord Cert. 4420714097610			
wie in Art. 7, Abs. 2 der (I) Maschinenrichtlinie & (I)	I) EN ISO 13732-1:2008, (I) EN 1037:1995+A1:2008 I) EN ISO 13849-2:2012, (I) EN ISO 13850:2015			
und in Artikel 6 der EMV-Richtlinie (I beschrieben 5	(II) EN 60204-1:2006/A1:2010, (II) EN 60320-1:2001/A1:2007 (II) EN 60529:1991/A2:2013, (II) EN 60947-5- 5:1997/A11:2013			
(1	III) EN 61000-6-2:2005, (III) EN 61000-6-4:2007/A1:2011			
Verweis auf andere (I) ISC	D/TS 15066 soweit anwendbar			
verwendete Technische (II) IEC Normen 1:2008 und Spezifikationen: (II) IEC 6 für S UR5e	C 60664-1:2007, (II) IEC 60664-5:2007, (II) IEC 61326-3- 8 C 61784-3:2010 (SIL2) ISO 14664-1:2015 (Reinraum Klasse Steuerungsbaugruppe mit Gehäuse und Klasse 5 für UR3e, e,UR10e und UR16e Manipulatoren)			
(III) IE (III) IE	(III) IEC 60068-2-1:2007, (III) IEC 60068-2-2:2007 (III) IEC 60068-2-27:2008, (III) IEC 60068-2-64:2008			

Der Hersteller oder sein autorisierter Vertreter muss auf begründetes Verlangen der nationalen Behörden einschlägige Informationen über die unvollständige Maschine übermitteln. Genehmigung einer umfassenden Qualitätsmanagementnorm (ISO 9001) durch die benannte Stelle Bureau Veritas, Zertifizierung #DK008850.

Odense Denmark, 17 August 2019

Name: Position/ Title

Universal Robots A/S, Energivej 25, DK-5260 Odense S, Denmark CVR-nr. 29 13 80 60

Roberta Nelson Shea Global Technical Compliance Officer

Phone +45 8993 8989 Fax +45 3879 8989 info@universal-robots.com www.universal-robots.com

14. Zertifizierungen

TÜV NORD

UNIVERSAL ROBOTS

ZERTIFIKAT CERTIFICATE

Hiermit wird bescheinigt, dass die Firma / This certifies that the company

Universal Robots A/S Energivej 25 5260 Odense S Denmark

berechtigt ist, das unten genannte Produkt mit dem abgebildeten Zeichen zu kennzeichnen is authorized to provide the product mentioned below with the mark as illustrated

Fertigungsstätte Manufacturing plant Universal Robots A/S Energivej 25 5260 Odense S Denmark

Beschreibung des Produktes (Details s. Anlage 1) Description of product (Details see Annex 1) TUV NORD TUV NORD CERT GmbH

Geprüft nach Tested in accordance with EN ISO 10218-1:2011

Industrial robot UR16e, UR10e, UR5e and UR3e

45141 Essen

Registrier-Nr. / Registered No. 44 780 14097607 Prüfbericht Nr. / Test Report No. 3524 9416 Aktenzeichen / File reference 8003008239

PULLE Zertifizierungsstelle der

TÜV NORD CERT GmbH

TÜV NORD CERT GmbH

Bitte beachten Sie auch die umseitigen Hinweise Please also pay attention to the information stated overleaf

Langemarckstraße 20

Gültigkeit / Validity von / from 2019-07-16 bis / until 2024-07-15

Essen, 2019-07-16

www.tuev-nord-cert.de

technology@tuev-nord.de

China RoHS

Management Methods for Controlling Pollution by Electronic Information Products Product Declaration Table For Toxic or Hazardous Substances 表1 有毒有害物质或元素名称及含量标识格式

Product/Part Name 产品/部件名称	Toxic and Hazardous Substances and Elements 有毒有害物 质或元素					
	铅 汞 六价 多溴联苯 多溴联苯 Lead (Pb) 飛rcury (Hg) Cadmium (Cd) Chromium (Cr+6) Splettik Splettik					
UR Robots UR3 / UR5 / UR10 UR机器人 UR3/UR5/UR10	x	0	x	0	x	x
 C: Indicates that this toxic or hazardous substance contained in all of the homogeneous materials for this part is below the limit requirement in SJ/T11363-2006. C: 表示该有毒有害物质在该部件所有均质材料中的含量均在SJ/T 11363-2006规定的限量要求以下。 X: Indicates that this toxic or hazardous substance contained in at least one of the homogeneous materials used for this part is above the limit requirement in SJ/T11363-2006. X: A示该有毒有害物质至少在该部件的某一均质材料中的含量超出SJ/T 11363-2006规定的限量要求。 (企业可在此处、根据实际情况对上表中打"X"的技术原因进行进一步说明。) 						
Items below are wear-out items and therefore can have useful lives less than environmental use period: 下列项目是损耗品,因而它们的使用寿命可能短于环境使用时间: Drives, Gaskets, Probes, Filters, Pins, Cables, Stiffener, Interfaces 驱动器, 垫圈, 探针, 过滤器, 别针, 缆绳, 加强筋, 接口 Refer to product manual for detailed conditions of use. 详细使用情况请阅读产品手册.						
Universal Robots encourages that all Electronic Information Products be recycled but does not assume responsibility or liability. Universal Robots 鼓励回收再循环利用所有的电子信息产品,但 Universal Robots 不负任何责任或义务						

To the maximum extent permitted by law, Customer shall be solely responsible for complying with, and shall otherwise assume all liabilities that may be imposed in connection with, any legal requirements adopted by any governmental authority related to the Management Methods for Controlling Pollution by Electronic Information Products (Ministry of Information Industry Order #39) of the Peoples Republic of China otherwise encouraging the recycle and use of electronic information products. Customer shall defend, indemnify and hold Universal Robots harmless from any damage, claim or liability relating thereto. At the time Customer desires to dispose of the Products, Customer shall refer to and comply with the specific waste management instructions and options set forth at http://www.teradyne.com/about-teradyne/corporate-social-responsibility, as the same may be amended by Teradyne or Universal Robots.

KCC Sicherheit

	K s
	자율안전확인 신고증명서
사업장당	^a Universal Robots A/S ^{사업상관리면호} 2016E110079
신청인 사업자동	등폭번호 016E110079 대표자 성명 Klaus Vestergaard
소재지	Energivej25, 5260 Odense S Denmark
자율안전인증대상 기	기계 • 기구명 산업용로봇
형식(규격)	UB16e 용량(등급) 6 axis
자율안전확인번호	19-AB2E0-01080
데조자	
소재지	
	Energivej25, 5260 Odense S Denmark
「산업안전보石	건법」 제35조제1항 및 같은 법 시행규칙 제61조제3항에 따라 자율안전확인 신고증명서를 발급합니다. 2019년 10월 18일
	한국산업안전보건공단 이사장 환경탄압연 한국산업안전보건공단 이사장
在1995年1月1日 第1996年1月1日 第1997 1月11日 1月111日 1月111 1月111 1月111 1月111 1月111 1月111 1111 1111 1111 11	

KC-Register

Registration	of Broadcasting and Communication Equipments
상호 또는 성명 Trade Name or Registrant	Universal Robots A/S
기자재명칭(제품명칭) Equipment Name	UR e-Series robot
기본모델명 Basic Model Number	UR16e
파생모델명 Series Model Number	
등록번호 Registration No.	R-R-URK-UR16e
제조자/제조(조립)국가 Manufacturer/Country of Origin	Universal Robots A/S / 덴마크
등록연월일 Date of Registration	2019-09-26
기타 Others	
위 기자재는「전파법」 It is verified that foregoing e Waves Act.	제58조의2 제3항에 따라 등록되었음을 증명합니다. quipment has been registered under the Clause 3, Article 58-2 of Radio
	국립전파연구원장 <mark>한장인</mark>
Director	General of National Radio Research Agency
※ 저하드로 바소!	토시기자재느 바디시 "적 학성 평가표시"

Umweltverträglichkeitszertifikat

Attestation o	f Conformity no. 119-2930	1-A1
Assessment holder		
Universal Robots A/S Energivej 25 5260 Odense S Denmark		
Product identification		
UR16e Robot Arm Controller CB, 3.2 UR10/5 (35	
FORCE Technology test	reports	
Environmental tests of UR1	6e, project no.: 119-24069, report no.: 119-24069-1 date	d 29 April 2019
Other technical docume	itation	
Conclusion The robot arms have been report listed above. All tests stated by the client.	tested according to the standards listed below. The test re were carried out as specified in the relevant specification	sults are given in the Force s including special test criteria's
IEC 60068-2-1:2007	Test Ae; Cold -5 °C, 16 h	
IEC 60068-2-2:2007	Test Be; Dry heat +35 °C, 16 h	
IEC 60068-2-2:2007	Test Be; Dry heat +50 °C, 16 h	
EN 60068-2-64:2008	Test Fh; Vibration (random), 5 – 10 Hz: +12 dB/oc 10-50 Hz 0.00042 g ² /Hz, 50 – 100 Hz: -12 dB/octa 0.15 grms, 3 x 30 min	tave, ve,
EN 60068-2-27:2008	Test Ea; Shock, 11 g, 11 ms, 6 x 9 shocks	
IEC 60529:2013	IP5X	
IEC 60529:2013	IPX4	
Signature		
GTS ABVARCED TICKINOLOGY GROU	FORCE Technology Venlighedsvel 4 FORCE Technology Nye Vakås vel 32 FORCE Technology T 2970 Hørsholm 1395 Hvalstad, Norway 72134 VE Tel.+45 43 25 14 00 +47 64 00 35 00 +46 Fax +47 64 00 35 01 +46 info@forcetechnology.no info@forcetechnology.no info@forcetechnology.no	ogy Sweden AB FORCE Technolog allmätargatan 7 Park Allé 34 sterås, Sweden 2605 Brandby, Denma (0)21-490 3000 +45 43 25 00 0 (0)21-490 3001 +45 43 25 00 0 retechnology.se vww.forcetechnology.c

Attestation of Conformity no. 119-29304-A1

FORCE Technology has performed compliance testing on electrical products since 1967. FORCE Technology is an accredited test house according to EN17025 and participates in international standardization with organizations such as CEN/CENELEC, IEC/CISPR and ETSI. This attestation of conformity with the below mentioned standards and/or normative documents is based on accredited tests and/or technical assessments carried out at FORCE Technology.

Attestation holder Universal Robots A/S Energivej 25 5260 Odense S DENMARK Product identification UR16e – 6-axis robot arm Manufacturer Universal Robots A/S **Technical documentation** FORCE Technology test report 119-24864-1, dated 03 June 2019. Standards/Normative documents IEC 61000-6-1:2016 EMC Directive 2014/30/EU, Article 6 IEC 61000-6-2:2016 EN 61000-6-1:2007 IEC 61000-6-3:2006 + AMD1:2010 EN 61000-6-2:2005 IEC 61000-6-4:2018 EN 61000-6-3:2007 + A1:2011 EN 61000-6-4:2007 + A1:2011 IEC 61326-3-1:2017 EN 61326-3-1:2017 The product identified above has been assessed and complies with the specified standards/normative documents. The attestation does not include any market surveillance. It is the responsibility of the manufacturer that mass-produced apparatus have the same properties and quality. This attestation does not contain any statements pertaining to the requirements pursuant to other standards, directives or laws other than the above mentioned. Signature Digitally signed by Knud A. Knud A. Baltsen Date: 2019.07.04 **Baltsen** 20:59:02 +02'00' Signed by: Knud A. Baltsen, Senior Specialist, Product Compliance

GTS ADVANCED TECHNOLOGY GROUP

FORCE Technology Agro Food Park 13 8200 Aarhus II Tel.+45 43 25 14 00 Fax

 FORCE Technology Norway AS
 FORCE Technology Sweden AB

 Nye Vakås vel 32
 Talimätargatan 7

 1395 Hvalstad, Norway
 72134 Västerås, Sweden

 +47 64 00 35 00
 +46 (0)21-490 3000

 info@forcetechnology.no
 info@forcetechnology.no

FORCE Technology Park Allé 345 2605 Brøndby, Denmark +45 43 25 00 00 +45 43 25 00 10 info@forcetechnology.dk www.forcetechnology.com

15. Angewandte Normen

Dieser Abschnitt beschreibt relevante Normen, die bei der Entwicklung des Roboterarms und der Control-Box angewendet wurden. Eine in Klammern stehende EU-Richtlinienbezeichnung bedeutet, dass die Norm gemäß dieser Richtlinie harmonisiert ist.

Ein Standard ist kein Gesetz, sondern ein von bestimmten Mitgliedern einer Branche verfasstes Dokument. Standards definieren die normalen Sicherheits- und Leistungsanforderungen für ein Produkt oder eine Produktgruppe.

Die Abkürzungen in diesem Dokument haben folgende Bedeutung:

- ISO International Standardization Organization
- IEC International Electrotechnical Commission
- EN European Norm
- TS Technical Specification
- TR Technical Report
- ANSI American National Standards Institute
- RIA Robotic Industries Association
- CSA Canadian Standards Association

Die Konformität mit den folgenden Standards ist nur dann gewährleistet, wenn die Montageanweisungen, die Sicherheitsanweisungen und andere Anleitungen in diesem Handbuch befolgt werden.

ISO 13849-1:2006 [PLd] ISO 13849-1:2015 [PLd] ISO 13849-2:2012 EN ISO 13849-1:2008 (E) [PLd - 2006/42/EC] EN ISO 13849-2:2012 (E) (2006/42/EG)

Safety of machinery - Safety-related parts of control systems

Part 1: General principles for design

Part 2: Validation

Die Sicherheitssteuerung ist entsprechend den Anforderungen der Standards als Performance-Level D (PLd) ausgelegt.

ISO 13850:2006 [Stopp-Kategorie 1] ISO 13850:2015 [Stopp-Kategorie 1] EN ISO 13850:2008 (E) [Stopp-Kategorie 1 - 2006/42/EG] EN ISO 13850:2015 [Stopp-Kategorie 1 - 2006/42/EG]

Maschinensicherheit - Notabschaltung - Design-Prinzipien

UNIVERSAL ROBOTS

Die Notabschaltungsfunktion ist nach diesem Standard als Stopp-Kategorie 1 ausgelegt. Stopp-Kategorie 1 beschreibt einen kontrollierten Stopp, bei dem die Motoren unter Stromzufuhr gestoppt werden und die Stromversorgung getrennt wird, nachdem der Stopp ausgeführt wurde.

ISO 12100:2010 EN ISO 12100:2010 (E) [2006/42/EG]

Safety of machinery - General principles for design - Risk assessment and risk reduction

UR Roboter werden nach den Prinzipien dieses Standards beurteilt.

ISO 10218-1:2011 EN ISO 10218-1:2011(E) [2006/42/EG]

Robots and robotic devices - Safety requirements for industrial robots

Part 1: Robots

Dieser Standard gilt für den Hersteller des Roboters und nicht für den Integrator. Der zweite Teil (ISO 10218-2) ist für den Roboter-Integrator bestimmt, da er sich mit der Installation und dem Design der Roboter-Anwendung befasst.

ANSI/RIA R15.06-2012

Industrielle Roboter und Robotersysteme - Sicherheitsanforderungen

Dieser amerikanische Standard umfasst die ISO-Normen ISO 10218-1 und ISO 10218-2 in einem Dokument. Das britische Englisch des Originals wurde in amerikanisches Englisch umgeändert, der Inhalt bleibt jedoch gleich.

Der zweite Teil (ISO 10218-2) dieser Norm trifft auf den Integrator des Robotersystems und daher nicht auf Universal Robots zu.

CAN/CSA-Z434-14

Industrial Robots and Robot Systems - General Safety Requirements

Dieser kanadische Standard umfasst die ISO-Normen ISO 10218-1 (siehe oben) und -2 in einem Dokument. CSA hat zusätzliche Anforderungen an den Benutzer des Robotersystems hinzugefügt. Einige dieser Anforderungen müssen möglicherweise vom Roboter-Integrator beachtet werden.

Der zweite Teil (ISO 10218-2) dieser Norm trifft auf den Integrator des Robotersystems und daher nicht auf Universal Robots zu.

IEC 61000-6-2:2005 IEC 61000-6-4/A1:2010 EN 61000-6-2:2005 [2004/108/EC] EN 61000-6-4/A1:2011 [2004/108/EG]

Electromagnetic compatibility (EMC)

Part 6-2: Generic standards - Immunity for industrial environments

Part 6-4: Generic standards - Emission standard for industrial environments

Diese Standards definieren Anforderungen in Bezug auf elektrische und elektromagnetische Störungen. Die Konformität mit diesen Standards gewährleistet, dass UR Roboter in Industrieumgebungen gut funktionieren und dass sie keine anderen Geräte stören.

IEC 61326-3-1:2008 EN 61326-3-1:2008

Electrical equipment for measurement, control and laboratory use - EMC requirements

Part 3-1: Immunity requirements for safety-related systems and for equipment intended to perform safety-related functions (functional safety) - General industrial applications

Dieser Standard definiert erweiterte EMV-Störfestigkeitsanforderungen für sicherheitsbezogene Funktionen. Die Konformität mit diesem Standard gewährleistet, dass die Sicherheitsfunktionen der UR-Roboter auch dann sicher arbeiten, wenn andere Geräte die in den IEC 61000 Normen definierten EMV-Grenzwerte überschreiten.

IEC 61131-2:2007 (E) EN 61131-2:2007 [2004/108/EG]

Programmable controllers

Part 2: Equipment requirements and tests

Sowohl normale als auch sicherheitsrelevante 24 V E/A wurden gem. den Anforderungen dieser Norm entwickelt und konstruiert, um eine sichere Kommunikation mit anderen SPS-Systemen zu gewährleisten.

ISO 14118:2000 (E) EN 1037/A1:2008 [2006/42/EG]

Safety of machinery - Prevention of unexpected start-up

Diese beiden Standards sind sich sehr ähnlich. Sie definieren Sicherheitsprinzipien zur Vermeidung eines unerwarteten Anlaufs als Folge einer unbeabsichtigten Wiederherstellung der Stromversorgung während der Wartung oder Reparatur oder aufgrund von unbeabsichtigten Anlaufbefehlen von Seiten der Steuerung.

IEC 60947-5-5/A1:2005 EN 60947-5-5/A11:2013 [2006/42/EC]

Low-voltage switchgear and controlgear

Part 5-5: Control circuit devices and switching elements - Electrical emergency stop device with mechanical latching function

Die direkte Kontaktunterbrechung und der Sicherheitsverriegelungsmechanismus des Not-Aus-Schalters entsprechen den Anforderungen dieses Standards.

IEC 60529:2013 EN 60529/A2:2013

Degrees of protection provided by enclosures (IP Code)

Diese Norm legt Schutzarten hinsichtlich des Schutzes gegen Staub und Wasser fest. UR Roboter werden laut dieser Norm entwickelt und erhalten einen IP-Code (siehe Aufkleber auf dem Roboter).

IEC 60320-1/A1:2007 IEC 60320-1:2015 EN 60320-1/A1:2007 [2006/95/EC] EN 60320-1:2015

Appliance couplers for household and similar general purposes

Part 1: General requirements

Das Netzkabel erfüllt diese Norm.

ISO 9409-1:2004 [Typ 50-4-M6]

Manipulating industrial robots - Mechanical interfaces

Part 1: Plates

Die Werkzeugflansche der UR Roboter entsprechen Typ 50-4-M6 dieses Standards. Roboterwerkzeuge sollten ebenfalls laut diesem Standard konstruiert sein, um eine ordnungsgemäße Passform zu gewährleisten.

ISO 13732-1:2006 EN ISO 13732-1:2008 [2006/42/EG]

Ergonomics of the thermal environment - Methods for the assessment of human responses to contact with surfaces

Part 1: Hot surfaces

Die UR Roboter sind so ausgelegt, dass ihre Oberflächentemperaturen stets unter dem in diesem Standard definierten, ergonomischen Grenzwert bleiben.

IEC 61140/A1:2004 EN 61140/A1:2006 [2006/95/EG]

Protection against electric shock - Common aspects for installation and equipment

UR Roboter werden gemäß diesem Standard konstruiert, um vor Stromschlägen zu schützen. Ein Erdungs-/Masseanschluss gemäß Teil I Hardware-Installationshandbuch auf Seite 5 ist zwingend erforderlich.

IEC 60068-2-1:2007 IEC 60068-2-2:2007 IEC 60068-2-27:2008 IEC 60068-2-64:2008 EN 60068-2-1:2007 EN 60068-2-2:2007 EN 60068-2-27:2009 EN 60068-2-64:2008

Environmental testing

Part 2-1: Tests - Test A: Cold

Part 2-2: Tests - Test B: Dry heat

Part 2-27: Tests - Test Ea and guidance: Shock

Part 2-64: Tests - Test Fh: Vibration, broadband random and guidance

UR Roboter werden nach den in diesen Normen definierten Testmethoden geprüft.

IEC 61784-3:2010 EN 61784-3:2010 [SIL 2]

Industrial communication networks - Profiles Part 3: Functional safety fieldbuses - General rules and profile definitions Diese Standards legen Anforderungen an sicherheitsbewertete Kommunikationsbusse fest.

IEC 61784-3:2010 EN 61784-3:2010 [SIL 2]

Safety of machinery - Electrical equipment of machines

Part 1: General requirements

Die allgemeinen Grundlagen dieser Norm sind erfüllt.

IEC 60664-1:2007 IEC 60664-5:2007 EN 60664-1:2007 [2006/95/EC] EN 60664-5:2007

Insulation coordination for equipment within low-voltage systems

UNIVERSAL ROBOTS

Part 1: Principles, requirements and tests

Part 5: Comprehensive method for determining clearances and creepage distances equal to or less than 2 mm

Die elektrischen Schaltkreise der UR Roboter erfüllen diese Norm.

EUROMAP 67:2015, V1.11

Electrical Interface between Injection Molding Machine and Handling Device / Robot

UR Roboter, die mit dem E67 Zusatzmodul zur Verwendung mit Spritzgießmaschinen ausgestattet sind, entsprechen dieser Norm.

16. Technische Spezifikationen

Robotertyp	UR16e
Gewicht	33.1 kg / 72.9 lb
Maximale Nutzlast	16 kg / 35,2 lb
Reichweite	900 mm / 35,4 in
Gelenkreichweite	± 360 ° for all joints
Speed	Basis und Schultergelenke: Max 120 °/s. Alle anderen Gelenke: Max 180 °/s.Tool: Approx. 1 ^m / _s / Approx. 39,4 ⁱⁿ / _s .
System Update Frequency	500 Hz
Kraftmoment-Sensor-Genauigkeit	5.5 N
Pose-Wiederholgenauigkeit	± 0,05 mm / ± 0,0019 in (1,9 mils) nach ISO 9283
Grundfläche	Ø190 mm / 7,5 in
Freiheitsgrad	6 rotating joints
Größe der Control-Box (B × H × T)	460 mm × 449 mm × 254 mm / 18.2 in × 17.6 in × 10 in
E/A-Anschlüsse Control-Box	16 digital in, 16 digital out, 2 analog in, 2 analog out
E/A-Anschlüsse Werkzeug	2 Digitaleingänge, 2 Digitalausgänge, 2 Analogeingänge
Werkzeugkommunikation	RS
Werkzeug-E/A-Stromversorgung	12V/24V 2 A (Dual pin) 1 A (Single pin)
E/A-Stromversorgung	24 V 2 A in Control Box
Kommunikation	TCP/IP 1000 Mbit: IEEE 802.3ab, 1000BASE-T Ethernet socket, MODBUS TCP & EtherNet/IP Adapter, Profinet
Programmierung	PolyScope graphical user interface on 12" touchscreen
Störung	Robot Arm: Less than 65dB(A) Control Box: Less than 50dB(A)
IP-Klassifizierung	IP54
Reinraumklassifizierung	Roboterarm: ISO Klasse 5, Control-Box: ISO Klasse 6
Maximale mittlere Leistung	585 W
Stromverbrauch	Approx. 350 W using a typical program
Short-Circuit Current Rating (SCCR)	200A
Kollaborierender Betrieb	17 advanced safety functions. In compliance with: EN ISO 13849-1:2008, PLd, Cat.3 and EN ISO 10218- 1:2011, clause 5.10.5

Materialien	Aluminium, PP plastic
Temperatur	
Stromversorgung	100-240 VAC, 47-440 Hz
TP Cable: Teach Pendant to Control Box	4.5 m / 177 in
Roboterkabel: Roboterarm zu Control-Box (Optionen)	Standard (PVC) 6 m/236 Zoll x 13,4 mm Standard (PVC) 12 m/472.4 Zoll x 13,4 mm HiFlex (PUR) 6 m/236 Zoll x 12,1 mm HiFlex (PUR) 12 m/472.4 Zoll x 12,1 mm

17. Tabellen zu Sicherheitsfunktionen

17.1. Table 1

HINWEIS

Die in diesem Kapitel vorgestellten Tabellen zu den Sicherheitsfunktionen sind vereinfacht. Die umfassenden Versionen finden Sie hier: <u>https://www.universal-robots.com/support</u>

Universal Robots e-Series Safety Functions and Safety I/O are PLd, Category 3 (ISO 13849-1), with certification by TŰV NORD (certificate # 44 207 14097610).

Safety Function (SF) Descriptions (see Chapter 2 of manual: For safety I/O, the resulting safety function including the external device or equipment is determined by the overall architecture and the sum of all PFHds, including the UR robot safety function PFHd. All safety functions are individual safety functions.

WARNUNG

If any safety function limit is exceeded, or a fault is detected in a safety function or safety-related part of the control system, the result is a Category 0 stop (immediate removal of power) according to IEC 60204-1.

SF# and Safety Function	Description	What happens?	Tole- rance	PFHd	Affects
SF1 1,2,3,4 Emergency Stop (according to ISO 13850)	Pressing the Estop PB on the pendant1 or the External Estop (if using the Estop Safety Input) results in a Cat 1 stop with power removed from the robot actuators and the tool I/O. Command1 all joints to stop and upon all joints coming to a monitored standstill state, power is removed. See Stop Time and Stop Distance Safety Functions. ONLY USE FOR EMERGENCY PURPOSES, not safeguarding.	Category 1 stop (IEC 60204-1)	-	1.30E- 07	Robot including robot tool I/O

SF# and Safety Function	Description	What happens?	Tole- rance	PFHd	Affects
SF2 Safeguard Stop4 (Protective Stop according to ISO 10218-1)	This safety function is initiated by an external protective device using safety inputs which will initiate a Cat 2 stop3. The tool I/O are unaffected by the safeguard stop. Various configurations are provided. If an enabling device is connected, it is possible to configure the safeguard stop to function in automatic mode ONLY. See the Stop Time and Stop Distance Safety Functions4 . For the functional safety of the complete integrated safety function, add the PFHd of the external protective device to the PFHd of the Safeguard Stop.	Category 2 stop (IEC 60204-1) SS2 stop (as described in IEC 61800-5-2)	-	1.20E- 07	Robot
SF3 Joint Position Limit (soft axis limiting)	Sets upper and lower limits for the allowed joint positions. Stopping time and distance is not a considered as the limit(s) will not be violated. Each joint can have its own limits. Directly limits the set of allowed joint positions that the joints can move within. It is set in the safety part of the User Interface. It is a means of safety-rated soft axis limiting and space limiting, according to ISO 10218-1:2011, 5.12.3.	Will not allow motion to exceed any limit settings. Speed could be reduced so motion will not exceed any limit. A protective stop will be initiated to prevent exceeding any limit.	5°	1.20E- 07	Joint (each)
SF4 Joint Speed Limit	Sets an upper limit for the joint speed. Each joint can have its own limit. This safety function has the most influence on energy transfer upon contact (clamping or transient). Directly limits the set of allowed joint speeds which the joints are allowed to perform. It is set in the safety setup part of the User Interface. Used to limit fast joint movements, e.g. risks related to singularities.	Will not allow motion to exceed any limit settings. Speed could be reduced so motion will not exceed any limit. A protective stop will be initiated to prevent exceeding any limit.	1.15 °/s	1.20E- 07	Joint (each)

SF# and Safety Function	Description	What happens?	Tole- rance	PFHd	Affects
Joint Torque Limit	Exceeding the internal joint torque limit (each joint) results in a Cat 0 stop3. This is shown as SF #5 in the Generation 3 (CB3) UR robots. This is not accessible to the user; it is a factory setting. It is NOT shown as a safety function because there are no user settings and no user configuration possibilities.	-	-	-	-
SF5 Called various names: Pose Limit, Tool Limit, Orientation Limit, Safety Planes, Safety Boundaries	Monitors the TCP Pose (position and orientation) and will prevent exceeding a safety plane or TCP Pose Limit. Multiple pose limits are possible (tool flange, elbow, and up to 2 configurable tool offset points with a radius) Orientation restricted by the deviation from the feature Z direction of the tool flange OR the TCP. This safety function consists of two parts. One is the safety planes for limiting the possible TCP positions. The second is the TCP orientation limit, which is entered as an allowed direction and a tolerance. This provides TCP and wrist inclusion/ exclusion zones due to the safety planes.	Will not allow motion to exceed any limit settings. Speed or torques could be reduced so motion will not exceed any limit. A protective stop will be initiated to prevent exceeding any limit. Will not allow motion to exceed any limit settings.	3° 40 mm	1.20E- 07	TCP Tool flange Elbow
SF6 Speed Limit TCP & Elbow	Monitors the TCP and elbow speed to prevent exceeding a speed limit.		50 mm/s	1.20E- 07	ТСР

SF# and Safety Function	Description	What happens?	Tole- rance	PFHd	Affects
SF7 Force Limit (TCP)	The Force Limit is the force exerted by the robot at the TCP (tool center point) and "elbow". The safety function continuously calculates the torques allowed for each joint to stay within the defined force limit for both the TCP & the elbow. The joints control their torque output to stay within the allowed torque range. This means that the forces at the TCP or elbow will stay within the defined force limit. When a monitored stop is initiated by the Force Limit SF, the robot will stop, then "back-off" to a position where the force limit was not exceeded. Then it will stop again.	Will not allow motion to exceed any limit settings. Speed or torques could be reduced so motion will not exceed any limit. A protective stop will be initiated to prevent exceeding any limit. Will not allow motion to exceed any limit	25N	1.50E- 07	TCP
SF8 Momentum Limit	The momentum limit is very useful for limiting transient impacts. The Momentum Limit affects the entire robot.	settings.	3 kg m/s	1.20E- 07	Robot
SF9 Power Limit	This function monitors the mechanical work (sum of joint torques times joint angular speeds) performed by the robot, which also affects the current to the robot arm as well as the robot speed. This safety function dynamically limits the current/ torque but maintains the speed.	Dynamic limiting of the current/torque	10 W	1.50E- 07	Robot

17. Tabellen zu Sicherheitsfunktionen

SF# and Safety Function	Description	PFHd	Affects
SF10 UR Robot Estop Output	When configured for Estop output and there is an Estop condition (see SF1), the dual outputs are LOW. If there is no Estop condition, dual outputs are high. Pulses are not used but they are tolerated. For the integrated functional safety rating with an external Estop device, add the PFHd of the UR Estop function (SF0 or SF1) to the PFHd of the external logic (if any) and its components (e.g. Estop pushbutton). For the Estop Output, validation is performed at the external equipment, as the UR output is an input to this external equipment.	4.70E-08	External connection to logic and/or equipment
SF11 UR Robot Moving: Digital Output	Whenever the robot is moving (motion underway), the dual digital outputs are LOW. Outputs are HIGH when no movement. The functional safety rating is for what is within the UR robot. The integrated functional safety performance requires adding this PFHd to the PFHd of the external logic (if any) and its components.	1.20E-07	External connection to logic and/or equipment
SF12 UR Robot Not stopping: Digital Output	Whenever the robot is STOPPING (in process of stopping or in a stand-still condition) the dual digital outputs are HIGH. When outputs are LOW, robot is NOT in the process or stopping and NOT in a stand-still condition. The functional safety rating is for what is within the UR robot. The integrated functional safety performance requires adding this PFHd to the PFHd of the external logic (if any) and its components.	1.20E-07	External connection to logic and/or equipment
SF13 UR Robot Reduced Mode: Digital Output	Whenever the robot is in reduced mode (or reduced mode is initiated), the dual digital outputs are LOW. See below. The functional safety rating is for what is within the UR robot. The integrated functional safety performance requires adding this PFHd to the PFHd of the external logic (if any) and its components.	1.20E-07	External connection to logic &/or equipment
SF14 UR Robot Not Reduced Mode: Digital Output	Whenever the robot is NOT in reduced mode (or the reduced mode is not initiated), the dual digital outputs are LOW. The functional safety rating is for what is within the UR robot. The integrated functional safety performance requires adding this PFHd to the PFHd of the external logic (if any) and its components.	1.20E-07	External connection to logic &/or equipment

SF# and Safety Function	Description	What happens?	Tole- rance	PFHd	Affects
SF15 Stopping Time Limit	Real time monitoring of conditions such that the stopping time limit will not be exceeded. Robot speed is limited to ensure that the stop time limit is not exceeded. The control SW continuously calculates the stopping capability of the robot in the given motion. If the time needed to stop the robot is at risk of exceeding the time limit, the speed of motion is reduced to ensure the limit is not exceeded. The safety function performs the same calculation of the stopping time and initiates a cat 0 stop if they are exceeded.	Will not allow the actual stopping time to exceed the limit setting. Causes decrease in speed or a protective stop so as NOT to exceed the limit	50 ms	1.20E- 07	Robot
SF16 Stopping Distance Limit	Real time monitoring of conditions such that the stopping distance limit will not be exceeded. Robot speed is limited to ensure that the stop distance limit will not be exceeded. The control SW continuously calculates the stopping capability of the robot in the given motion. If the distance needed to stop the robot is at risk of exceeding the distance limit, the speed of motion is reduced to ensure the limit is not exceeded. The safety function performs the same calculation of the stopping distance and initiates a cat 0 stop if they are exceeded.	Will not allow the actual stopping time to exceed the limit setting. Causes decrease in speed or a protective stop so as NOT to exceed the limit	40 mm	1.20E- 07	Robot
SF17 Safe Home Position	Safety function which monitors a safety rated output, such that it ensures that the output can only be activated when the robot is in the configured "safe home position". A cat 0 stop is initiated if the output is activated when the robot is not in the configured position.	The "safe home output" can only be activated when the robot is in the configured "safe home position"	1.7°	1.20E- 07	External connection to logic and/or equipment

UR16e

17. Tabellen zu Sicherheitsfunktionen

Safety Function	Description	PFHd	Affects
Reduced Mode SF settings change	Reduced Mode can be initiated by a safety plane/ boundary (starts when at 2cm of the plane and reduced mode settings are achieved within 2cm of the plane) or by use of an input to initiate (will achieve reduced settings within 500ms). When the external connections are Low, Reduced Mode is initiated. Reduced Mode means that ALL reduced mode limits are ACTIVE. Reduced mode is not a safety function, rather it is a state affecting the settings of the following safety function limits: joint position, joint speed, TCP pose limit, TCP speed, TCP force, momentum, power, stopping time, and stopping distance.	PFHd is either 1.20E-07 or 1.50E- 07 depending on the safety function	Robot
Safeguard Reset	When configured for Safeguard Reset and the external connections transition from low to high, the safeguard stop RESETS. Safety input to initiate a reset of safeguard stop safety function.	Input to SF2 (See SF2)	Robot
3 Position Enabling Device INPUT	 When the external Enabling Device connections are Low, a Safeguard Stop (SF2) is initiated. Recommendation: Use with a mode switch as a safety input. If a mode switch is not used and connected to the safety inputs, then the robot mode will be determined by the User Interface. If the User Interface is in "run mode", the enabling device will not be active. "programming mode", the enabling device will be active. It is possible to use password protection for changing the mode by the User Interface. 	Input to SF2 (See SF2 safeguard stop)	Robot
Mode switch INPUT	When the external connections are Low, Operation Mode (running/ automatic operation in automatic mode) is in effect. When High, mode is programming/ teach. Recommendation: Use with a 3- position enabling device. When in teach/program, initially the TCP speed will be limited to 250mm/s. The speed can manually be increased by using the pendant user interface "speed-slider", but upon activation of the enabling device, the speed limitation will reset to 250mm/s.	Input to SF2 (See SF2 safeguard stop)	Robot

17.2. Table 2

UR e-Series robots comply with ISO 10218-1:2011 and the applicable portions of ISO/TS 15066. It is important to note that most of ISO/TS 15066 is directed towards the integrator and not the robot manufacturer. ISO 10218-1:2011, clause 5.10 collaborative operation details 4 collaborative operation techniques as explained below. It is very important to understand that collaborative operation is of the APPLICATION when in AUTOMATIC mode.

R	
	ROBOTS

#	ISO 10218-1	Technique	Explanation	UR e-Series
1	Collaborative Operation 2011 edition, clause 5.10.2	Safety-rated monitored stop	Stop condition where position is held at a standstill and is monitored as a safety function. Category 2 stop is permitted to auto reset. In the case of resetting and restarting operation after a safety -rated monitored stop, see ISO 10218-2 and ISO/TS 15066 as resumption shall not cause hazardous conditions.	UR robots' safeguard stop is a safety-rated monitored stop, See SF2 on page 1. It is likely, in the future, that "safety-rated monitored stop" will not be called a form of collaborative operation.
2	Collaborative Operation 2011 edition, clause 5.10.3	Hand- guiding	This is essentially individual and direct personal control while the robot is in automatic mode. Hand guiding equipment shall be located close to the end-effector and shall have: • an Emergency Stop pushbutton • a 3-position enabling device • a safety-rated monitored stop function • a settable safety-rated monitored speed function	UR robots do not provide hand-guiding for collaborative operation. Hand-guided teach (free drive) is provided with UR robots but this is for programming in manual mode and not for collaborative operation in automatic mode.
#	ISO 10218-1	Technique	Explanation	UR e-Series
---	--	---	---	--
3	Collaborative Operation 2011 edition, clause 5.10.4	Speed and separation monitoring (SSM) safety functions	 SSM is the robot maintaining a separation distance from any operator (human). This is done by monitoring of the distance between the robot system and intrusions to ensure that the MINIMUM PROTECTIVE DISTANCE is assured. Usually, this is accomplished using Sensitive Protective Equipment (SPE), where typically a safety laser scanner detects intrusion(s) towards the robot system. This SPE causes: dynamic changing of the parameters for the limiting safety functions; or a safety-rated monitored stop condition. Upon detection of the intrusion exiting the protective device's detection zone, the robot is permitted to: resume the "higher" normal safety function limits in the case of 1) above resume operation in the case of 2) 2), restarting operation after a safety -rated monitored stop, see ISO 10218-2 and ISO/TS 15066 for requirements. 	To facilitate SSM, UR robots have the capability of switching between two sets of parameters for safety functions with configurable limits (normal and reduced). See Reduced Mode on page 4. Normal operation can be when no intrusion is detected. It can also be caused by safety planes/ safety boundaries. Multiple safety zones can be readily used with UR robots. For example, one safety zone can be used for "reduced settings" and another zone boundary is used as a safeguard stop input to the UR robot. Reduced limits can also include a reduced setting for the stop time and stop distance limits - to reduce the work area and floorspace.

#	ISO 10218-1	Technique	Explanation	UR e-Series
4	Collaborative Operation 2011 edition, clause 5.10.5	Power and force limiting (PFL) by inherent design or control	How to accomplish PFL is left to the robot manufacturer. The robot design and/or safety functions will limit the energy transfer from the robot to a person. If any parameter limit is exceeded, a protective stop happens. PFL applications require considering the ROBOT APPLICATION (including the end-effector and workpiece(s), so that any contact will not cause injury. The study performed evaluated pressures to the ONSET of pain, not injury. See Annex A. See ISO/TR 20218-1 End-effectors.	UR robots are power and force limiting robots specifically designed to enable collaborative applications where the robot could contact a person and cause no injury. UR robots have safety functions that can be used to limit motion, speed, momentum, force, power and more of the robot. These safety functions are used in the robot application to thereby lessen pressures and forces caused by the end-effector and workpiece(s).

Teil II

PolyScope-Handbuch

18. Vorwort

Dieses Kapitel enthält die wesentlichen Informationen, die Sie benötigen, um Ihren Universal Robots-Roboter in Betrieb zu nehmen.

HINWEIS

Vor dem ersten Einschalten des Roboters muss der beauftragte Universal Robots Roboterintegrator:

- 1. Die Informationen zur Sicherheit im Hardware-Installationshandbuch durchlesen.
- 2. Die Sicherheitskonfigurationsparameter aus der Risikobewertung festlegen (siehe 22. Sicherheitskonfiguration auf Seite 119).

18.1. Roboterarm-Grundlagen

Der Universal Robots-Roboterarm besteht aus Rohren und Gelenken. Mit PolyScope koordinieren Sie die Bewegung dieser Gelenke und die bewegung des Roboterarms. Sie besfestigen Werkzeuge am Ende des Roboterarms oder am Werkzeugflansch . Durch Bewegen des Roboterarms wird das Werkzeug positioniert. Das Werkzeug kann nicht direkt über oder unter dem Unterteil positioniert werden.

- Basis : wo der Roboter befestigt ist.
- Schulter und Ellbogen: dienen der Ausführung größerer Bewegungen.
- Handegelenk 1 und Handgelenk 2: dienen der Ausführung kleinerer Bewegungen.
- Handgelenk 3: wo das Werkzeug am Werkzeugflansch befestigt ist.

18.2. PolyScope Grundlagen

PolyScope ist die grafische Benutzeroberfläche (GUI) im **Teach Pendant**, mit dem der Roboterarm über einen Touch-Screen bedient wird. Programme für den Roboter werden in PolyScope erstellt, geladen und ausgeführt. Die PolyScope-Benutzeroberfläche ist wie in der folgenden Abbildung dargestellt unterteilt:

- A: Kopfzeile mit Symbolen/Tabs, über die Sie interaktive Bildschirme aufrufen können.
- B: Fußzeile mit Schaltflächen für Ihre geladenen Programme.
- C: **Bildschirm** mit Feldern und Optionen zur Manipulation und Überwachung von Roboteraktionen.

18.2.1. Touch-Screen

Der Teach Pendant-Touch Screen ist für den Einsatz in Industrieumgebungen optimiert. Im Gegensatz zur Unterhaltungselektronik ist der Touch-Screen des Teach Pendant von der Konstruktion her widerstandsfähiger gegen Umwelteinflüsse wie z. B:

- Wassertröpfchen und/oder Tröpfchen vom Maschinenkühlmittel
- Funkwellenemissionen
- andere leitungsgebundene Emissionen in der Betriebsumgebung.

Die Berührungsempfindlichkeit ist so ausgelegt, dass eine falsche Auswahl in PolyScope vermieden wird und unerwartete Bewegungen des Roboters verhindert werden.

Verwendung des Touch-Screens

Die besten Ergebnisse erzielen Sie, wenn Sie mit der Fingerspitze eine Auswahl auf dem Bildschirm treffen.

In diesem Handbuch wird dies als "tippen" bezeichnet.

Falls gewünscht, kann ein handelsüblicher Stift zur Auswahl auf dem Bildschirm verwendet werden.

Im folgenden Abschnitt werden die Symbole/Tabs und Schaltflächen in der PolyScope-Oberfläche aufgelistet und definiert.

18.2.2. Symbole/Tabs in der Kopfzeile

Ausführen ist eine unkomplizierte Möglichkeit, den Roboter anhand vordefinierter Programme einzusetzen.

Programm erstellt und/oder ändert Roboterprogramme.

Installation konfiguriert die Roboterarm-Einstellungen und externe Vorrichtungen, z. B. die Montage und Sicherheit.

Move steuert und/oder regelt die Roboterbewegung.

I/O dient zum Überwachen und Steuern von Eingangs-/Ausgangssignalen in Echtzeit, die zu und von der Control-Box übertragen werden.

Log enthält Angaben über den intakten Status des Roboters sowie Warn- oder Fehlermeldungen.

Programm- und Installations-Manager für die Auswahl und

Anzeige aktiver Programme und Installationen (siehe 29.4. Datei-Manager auf Seite 260). Der Programm- und Installations-Manager beinhaltet: Dateipfad, Neu, Öffnen und Speichern.

Neu... dient zum Erstellen eines neuen Programms oder einer Installation.

Öffnen... dient zum Öffnen eines zuvor erstellten und gespeicherten Programms bzw. einer Installation.

^{Speichern...} Speichern... dient zum Speichern eines Programms, einer Installation oder beider Komponenten gleichzeitig.

Automatisch gibt an, dass der Betriebsmodus des Roboters auf "Automatisch" festgelegt ist. Tippen Sie darauf, um zum Betriebsmodus "Manuell" umzuschalten.

Manuell gibt an, dass der Betriebsnodus des Roboters auf "Manuell" festgelegt ist. Tippen Sie darauf, um den Automatik-Betriebsmodus umzuschalten.

Die Symbole für Lokal- und Fernsteuer-Modus sind nur aktiv, wenn die Fernsteuerung aktiviert ist.

Lokal gibt an, dass der Roboter lokal gesteuert werden kann. Tippen Sie darauf, um auf Fernsteuerung umzuschalten.

Fernsteuer. Ferngesteuert gibt an, dass der Roboter von einer entfernten Position aus gesteuert werden kann. Tippen Sie darauf, um auf lokale Steuerung umzuschalten.

Sicherheitsprüfsumme zeigt die aktive Sicherheitskonfiguration an.

18.2.3. Schaltflächen in der Fußzeile

Initialisieren handhabt den Status des Roboters. Wenn ROT, wird der Roboter durch Drücken in Betrieb gesetzt.

Der Geschwindigkeitsregler zeigt unter Einbeziehung der

Sicherheitseinstellungen die relative Geschwindigkeit in Echtzeit an, mit der sich der Roboterarm bewegt.

Simulation

Mit der Schaltfläche **Simulation** wird die Programmausführung zwischen dem Simulationsmodus und dem echten Roboter umgeschaltet. Bei Ausführung im Simulationsmodus bewegt sich der Roboterarm nicht. Daher kann der Roboter bei einer Kollision weder sich selbst noch Geräte in der Nähe beschädigen. Wenn Sie sich nicht sicher sind, wie sich der Roboterarm verhalten wird, testen Sie Ihre Programme im Simulationsmodus.

250mm/s Manuelle hohe Geschwindigkeit erlaubt es der Werkzeuggeschwindigkeit, zeitweise 250 mm/s zu überschreiten. Diese Totmann-Funktion ist nur im manuellen Modus bei Konfiguration eines dreistufigen Zustimmschalters verfügbar.

Abspielen startet das aktuell geladene Roboterprogramm.

Schritt dient zur Einzelschrittausführung eines Programms.

Stopp hält das aktuell geladene Roboterprogramm an.

18.3. Installation

18.3.1. Installation von Roboterarm und Control-Box

Installieren Sie den Roboterarm und die Control-Box und schalten Sie sie ein, um PolyScope zu verwenden.

Weitere Informationen finden Sie unter Hardware-Installationshandbuch.

- 1. Packen Sie den Roboterarm und die Control-Box aus.
- 2. Montieren Sie den Roboterarm auf einer stabilen, vibrationsfreien Fläche.

Montieren Sie den Roboter auf einer stabilen Oberfläche, die mindestens das Zehnfache des normalen Drehmoments des Basisflanschgelenks und mindestens das Fünffache des Gewichts des Roboterarms aushalten kann.

- 3. Stellen Sie die Control-Box auf ihren Fuß.
- 4. Schließen Sie das Roboterkabel zwischen Roboterarm und Control-Box an.
- 5. Stecken Sie den Netzstecker des Controllers ein.

WARNUNG

Kippgefahr. Wird der Roboter nicht sicher auf einer stabilen Oberfläche platziert, kann er umfallen und Verletzungen verursachen.

18.3.2. Control-Box ein- und ausschalten

In der Control-Box befinden sich hauptsächlich die elektrische Ein- und Ausgangskontakte, über die der Roboterarm, das Teach Pendant sowie die gesamte Peripherie elektrisch miteinander verbunden sind. Um den Roboterarm mit Energie zu versorgen, müssen Sie die Control-Box einschalten.

- 1. Drücken Sie den Einschalter auf dem Teach Pendant, um die Control-Box einzuschalten.
- 2. Warten Sie, bis im Display ein Text vom Betriebssystem erscheint und anschließend mehrere Schaltflächen sichtbar werden.

Der Bildschirm "Erste Schritte" kann angezeigt werden, in dem Sie aufgefordert werden, mit der Programmierung des Roboters zu beginnen.

	Erste Schritte						
Was möchten Sie zuerst tun?							
PROGRAMM AUSFÜHREN	ROBOTER PROGRAMMIEREN	2 ROBOTERINSTALLATION KONFIGURIEREN					
Diese Nachricht nicht wieder anzeigen							

Copyright © 2009-2021 by Universal Robots A/S. Alle Rechte vorbehalten.

18.4. Initialisierung

Bei erster Inbetriebnahme kann das Dialogfeld "Kann nicht fortgesetzt werden" angezeigt werden. Wählen Sie **Zum Initialisierungsbildschirm**, um den Initialisierungsbildschirm aufzurufen.

In der Fußzeile links zeigt die Initialisieren-Schaltfläche den Status des Roboterarms über verschiedene Farben an:

- Rot Ausschalten. Der Roboterarm befindet sich in einem gestoppten Zustand.
- Gelb Leerlauf. Der Roboterarm ist eingeschaltet, jedoch nicht für den normalen Betrieb bereit.
- Grün Normal. Der Roboterarm ist eingeschaltet und betriebsbereit.

Roboterstatus			Initialisieren			
	Einschalten	Startvorgang	Roboter	Bremse	Roboter in	
		START	antiv	gelöst	• AUS	
Nutzlast			Robote	r		
Die aktive Nutzlast überso angegebene Nutzlast.	hreibt vorübergehend	die in der Installatior	٢			
Aktive Nutzlast	Installati 0,00 k	ons-Nutzlast <g< td=""><td></td><td></td><td></td><td></td></g<>				
					4.	

18.4.1. Starten des Roboterarms

WARNUNG

Stellen Sie stets sicher, dass die tatsächliche Nutzlast und Installation korrekt ist, bevor Sie den Roboterarm starten. Sind diese Einstellungen falsch, funktionieren der Roboter und die Control-Box nicht korrekt und können eine Gefährdung für Menschen oder Geräte darstellen.

VORSICHT

Stellen Sie sicher, dass der Roboterarm kein Objekt berührt (z. B. einen Tisch), da eine Kollision des Roboterarms mit einem Hindernis das Gelenkgetriebe beschädigen könnte.

Zum Starten des Roboters:

- Klicken Sie auf die EIN-Taste mit der grünen LED, um den Initialisierungsvorgang zu starten. Die Status-LED wechselt nun zu gelb, um anzuzeigen, dass der Strom eingeschaltet und der Roboter im Ruhemodus ist.
- 2. Klicken Sie auf START, um die Bremsen zu lösen.
- 3. Klicken Sie auf die AUS-Taste mit der roten LED zur Abschaltung des Roboterarms.
- Sobald PolyScope hochgefahren ist, klicken Sie einmal auf EIN, um den Roboterarm einzuschalten. Die Status-LED wechselt nun zu gelb, um anzuzeigen, dass der Strom eingeschaltet und der Roboter im Ruhemodus ist.
- Ist der Roboterarm im **Ruhemodus**, klicken Sie auf START, um den Roboterarm zu starten. Nun werden die Sensordaten hinsichtlich der konfigurierten Aufstellung des Roboterarms geprüft.

Wird eine fehlende Übereinstimmung entdeckt (mit einer Toleranz von 30°), wird die Schaltfläche deaktiviert und unter ihr eine Fehlermeldung angezeigt.

• Verlief die Installationsabnahme positiv, werden durch Antippen der Taste Start alle Gelenkbremsen gelöst und der Roboterarm ist für den normalen Betrieb einsatzbereit.

Bei der Inbetriebsetzung des Roboterarms sind durch das Lösen der Gelenkbremsen Geräusche zu hören und es finden leichte Bewegungen statt.

18.5. Schnelle Inbetriebnahme des Systems

Prüfen Sie vor der Benutzung von PolyScope, ob Roboterarm und Control-Box korrekt installiert sind.

UNIVERSAL ROBOTS

- 1. Drücken Sie den Not-Ausschalter am Teach Pendant.
- 2. Drücken Sie den Power-Knopf am Teach Pendant und lassen Sie das System starten. In **PolyScope** wird ein Text angezeigt.
- 3. Im Touchscreen erscheint eine Meldung, dass das System bereit ist und der Roboter initialisiert werden muss.
- 4. Tippen Sie im Dialogfenster auf **Zum Initialisierungsbildschirm**, um den Initialisierungsbildschirm aufzurufen.
- 5. Entsperren Sie den Not-Aus-Schalter, um den Roboter von **Notabschaltung** auf **Ausgeschaltet** umzustellen.
- 6. Verlassen Sie die Reichweite (den Arbeitsbereich) des Roboters.
- 7. Tippen Sie im Bildschirm **Roboter initialisieren** die Schaltfläche **EIN** und warten Sie, bis sich der Roboterstatus in **Ruhemodus** ändert.
- 8. Bestätigen Sie unter **Aktive Nutzlast** im Fenster **Nutzlast** das Nutzlast-Gewicht. Im Feld **Roboter** können Sie die korrekte Montageposition bestätigen.
- 9. Tippen Sie auf die Schaltfläche **Start**, um das Bremssystem des Roboters zu lösen. Wenn der Roboter vibriert und Klickgeräusche zu hören sind, ist er für die Programmierung bereit.

HINWEIS

Die Programmierung Ihres Universal Robots-Roboters erlernen Sie auf www.universal-robots.com/academy/

18.6. Das erste Programm

Ein Programm ist eine Liste von Befehlen, die dem Roboter Anweisungen erteilt. Für die meisten Aufgaben erfolgt die Programmierung ausschließlich mit dem PolyScope. Lernen Sie den Roboterarm zur Ausführung einer Bewegung mit einer Reihe von Wegpunkten an und richten Sie einen Pfad ein, dem der Roboterarm folgt.

Klicken Sie auf die Registerkarte "Bewegen" (siehe 26. Register Move auf Seite 243), um den Roboterarm in eine gewünschte Position zu bewegen oder lernen Sie die Position an, indem Sie den Arm in die richtige Position ziehen, während Sie die Schaltfläche Freedrive an der Oberseite des Teach Pendant gedrückt halten.

Neben der Bewegung entlang verschiedener Wegpunkte kann das Programm an bestimmten Stellen entlang des Weges E-/A-Signale an andere Maschinen senden, und - basierend auf Variablen und E-/A-Signale - Befehle ausführen, wie beispielsweise **if...then** und **Schleifen**.

Das Folgende ist ein einfaches Programm, mit dem ein Roboterarm zwischen zwei Wegpunkten bewegt werden kann.

So erstellen Sie ein einfaches Programm

- 1. In der PolyScope-Kopfzeile Dateipfad tippen Sie auf Neu..., und wählen Sie Programm.
- 2. Klicken Sie unter "Basis-Befehle" auf **Wegpunkt**, um einen Wegpunkt zur Programmstruktur hinzuzufügen. Ein standardmäßiger MoveJ wird auch zur Programmstruktur hinzugefügt.
- 3. Wählen Sie den neuen Wegpunkt und tippen Sie im Befehls-Tab auf Wegpunkt.
- 4. Bewegen Sie auf dem Bildschirm Move Tool den Roboterarm durch Drücken der Bewegungspfeile.

Sie können den Roboterarm auch bewegen, indem Sie die Taste Freedrive gedrückt halten und den Roboterarm in die gewünschte Positionen ziehen.

- 5. Sobald sich der Roboterarm in Position befindet, drücken Sie **OK** und der neue Wegpunkt wird als Wegpunkt_1 angezeigt.
- 6. Befolgen Sie die Schritte 2 bis 5 zum Erstellen von Wegpunkt_2.
- 7. Wählen Sie Wegpunkt_2 und drücken Sie den Pfeil nach oben, bis er sich über Wegpunkt_1 befindet, um die Reihenfolge der Bewegungen zu ändern.
- Halten Sie die Not-Aus-Taste gedrückt und drücken Sie in der PolyScope-Fußzeile die Abspielen-Schaltfläche, damit sich der Roboterarm zwischen Wegpunkt_1 und Wegpunkt_2 bewegt.

Herzlichen Glückwunsch! Sie haben Ihr erstes Roboterprogramm erstellt, welches den Roboterarm zwischen zwei vorgegebenen Wegpunkten bewegt.

HINWEIS

- 1. Bewegen Sie den Roboter nicht gegen sich selbst oder andere Dinge, da dies den Roboter beschädigen kann.
- 2. Dies ist nur eine Schnellstartanleitung, um zu demonstrieren, wie einfach es ist, einen UR Roboter zu verwenden. Dabei wurde von einer gefährdungsfreien Umgebung und einem sehr vorsichtigen Benutzer ausgegangen. Erhöhen Sie nicht die Geschwindigkeit oder die Beschleunigung über die Standardwerte hinaus. Führen Sie immer eine Risikobewertung durch, bevor Sie den Roboter in Betrieb nehmen.

WARNUNG

Halten Sie Ihren Kopf und Oberkörper vom Wirkungsbereich des Roboters fern. Halten Sie Finger fern von Bereichen, in denen sie sich verfangen können.

18.7. Roboter-Registrierung und URCap-Lizenzdateien

Bevor Sie den Fernzugriff-TCP URCap verwenden, registrieren Sie den Roboter und laden und installieren Sie die URCap-Lizenzdatei (siehe 24.13. URCaps auf Seite 196).

ren Programm Installation Bewager	EA Protokoll Folgen Sie diesen drei einfache	n Schritte, um Ihren Roboter zu regis	itrieren	
 ✓ System System- Backup URCaps Roboter- Registrierung Fernsteue Eingeschrän Freedrive Netzwerk Aktualisieren 	Schritt 1	Schritt 2	nterladen Schritt 3	n
Abbrechen	Geschwindigkeit @	100%	000	Simulation

18.7.1. Registrierung des Roboters aus Ihrem aktuellen Bildschirm

- 1. Tippen Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie Einstellungen.
- 2. Tippen Sie im Menü links auf **System** und wählen Sie **Roboter-Registrierung**, um die Einstellungen anzuzeigen.
- 3. Führen Sie die Schritte 1 und 2 aus, um Ihren Roboter zu registrieren.

18.7.2. Herunterladen der URCAP-Lizenzdatei

- 1. Füllen sie die erforderlichen Felder aus und laden die Lizenzdatei auf den PC herunter.
- 2. Kopieren Sie die Lizenzdatei auf einen USB-Stick und stecken Sie diesen in das Teach Pendant.
- 3. Tippen Sie in den Einstellungen (Schritt 3) auf **Datei laden**, um **Registrierungsdatei auswählen** zu öffnen.
- 4. Wählen Sie in der Liste den USB, um die Inhalte anzuzeigen und navigieren zur Lizenzdatei.
- 5. Wählen Sie **license.p7b** und klicken Sie auf **Öffnen**, um die Registrierung des Roboters zu bestätigen.
- 6. Klicken Sie unten links auf Beenden.

Ausfüh	ren Programn	n Installation Bew		Protokoll		PROGR INSTALLA	AMM <unbenannt> TION default</unbenannt>	Neu	öffnen Speich	ern		с с с с	≡
						Registrierung	sdatei auswähle	n					
	Neu	Ausschneiden Kop	ieren Einfügen Lösc	then Un	abenennen							Sicherung	
	licer	nse.p7b											
	Dateinar	me:					Filter:						
							Universal Robo	ts Registrie	erungsdateie	n		•	
										Öffner	n Abb	rechen	
0	Aussch	nalten		Ge	schwindigkeit	:	100%	C		0	Simu	ulation	

18.7.3. Roboter-Registrierung zurücksetzen

Eine neue Lizenz wird erforderlich, wenn der Roboter den Besitzer wechselt. In diesem Fall muss die Registrierung des Roboters zunächst rückgängig gemacht werden.

- 1. Tippen Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie Einstellungen.
- 2. Tippen Sie im Menü links auf **System** und wählen Sie **Roboter-Registrierung**, um die Einstellungen anzuzeigen.
- 3. Tippen Sie im Bildschirm unten rechts auf Registrierung zurücksetzen.

19. Freedrive

Dieses Kapitel beschreibt, wie der Roboterarm in Freedrive eingesetzt wird.

Mit Freedrive kann der Roboterarm manuell in die gewünschten Positionen und Posen gezogen werden.

Bei der Verwendung von Freedrive erzeugt der Roboterarm einen Widerstand, wenn er sich einer Gelenkgrenze oder einer Sicherheitsebene nähert (siehe 22.11. Ebenen auf Seite 125).

Befindet sich der Roboterarm in Freedrive, wird in PolyScope ein Fenster angezeigt, wie unten dargestellt.

Die LED in der Statusleiste auf dem Freedrive-Bedienfeld zeigt an:

- Wenn ein oder mehrere Gelenke sich ihren Gelenkgrenzen nähern.
- Wenn sich die Positionierung des Roboterarms der Singularität nähert. Der Widerstand nimmt zu, wenn sich der Roboter der Singularität nähert, sodass er sich schwerer Positionieren lässt.

Sie können eine oder mehrere der Achsen sperren, so dass der TCP sich in eine bestimmte Richtung bewegen kann, wie in der untenstehenden Tabelle definiert.

Ebene	Die Bewegung ist nur durch die X- und Y-Achse erlaubt.
Translatorisch	Die Bewegung ist durch alle Achsen erlaubt, ohne Rotation.
Rotation	Die Bewegung ist durch alle Achsen in einer Kreisbewegung um den TCP erlaubt.

WARNUNG

Das Bewegen des Roboterarms in einigen Achsen, wenn ein Werkzeug angebracht ist, kann einen Quetschpunkt aufweisen.

19.1. Freedrive aktivieren: Standard-Teach-Pendant

Sie haben folgende Möglichkeiten, Freedrive zu aktivieren:

- Verwenden Sie die Freedrive-Schaltfläche.
- Verwenden Sie die Freedrive-Schaltfläche auf dem Bildschirm der Registerkarte "Bewegen" (siehe 26.2.4. Freedrive auf Seite 244).
- Verwenden Sie E/A-Aktionen (siehe).

WARNUNG

- Aktivieren Sie Freedrive nicht, wenn Sie den Roboter schieben oder berühren, da dies zu einem Abdriften des Roboters führen kann.
- Wechseln Sie nicht die Achsen, während Sie den Roboter im Freedrive-Modus bewegen, da dies ein Abdriften des Roboters verursachen könnte.

19.1.1. Freedrive-Schaltfläche

- 1. Halten Sie die Freedrive-Schaltfläche auf dem Teach Pendant gedrückt.
- 2. Wenn das Freedrive-Panel in PolyScope angezeigt wird, wählen Sie die gewünschte Bewegungsart für die Gelenke des Roboterarms aus. Oder verwenden Sie die Liste der Achsen, um den Bewegungstyp anzupassen.
- 3. Sie können bei Bedarf den Typ der Funktion definieren, indem Sie eine Option aus der Funktion-Dropdown-Liste wählen.

Der Roboterarm kann seine Bewegung stoppen, wenn er sich einem Singularitätsszenario

nähert. Tippen Sie Alle Bewegungen frei im Freedrive-Panel, um die Bewegung wieder aufzunehmen.

4. Bewegen Sie den Roboterarm wie gewünscht.

19.1.2. Verwenden der Freedrive-Schaltfläche auf dem Bildschirm der Registerkarte "Bewegen"

- 1. Tippen Sie in der Kopfzeile auf Bewegen.
- 2. Tippen Sie im Roboter-Panel auf Freedrive.
- 3. Wenn das Freedrive-Panel angezeigt wird, wählen Sie die gewünschte Bewegungsart für die Gelenke des Roboterarms aus. Oder verwenden Sie die Liste der Achsen, um den Bewegungstyp anzupassen.
- Sie können bei Bedarf den Typ der Funktion definieren, indem Sie eine Option aus der Funktion-Dropdown-Liste wählen.
 Der Roboterarm kann seine Bewegung stoppen, wenn er sich einem Singularitätsszenario nähert. Tippen Sie Alle Bewegungen frei im Freedrive-Panel, um die Bewegung wieder aufzunehmen.
- 5. Halten Sie auf dem Freedrive-Panel Freedrive gedrückt, um den Roboterarm zu bewegen.

19.2. Freedrive aktivieren: 3PE-Teach-Pendant

So verwenden Sie die 3PE-Taste für einen Freedrive des Roboterarms:

1. Drücken Sie die 3PE-Taste schnell und leicht und halten Sie sie dann leicht gedrückt.

Jetzt können Sie den Roboterarm in eine gewünschte Position ziehen, während Sie den leichten Druck beibehalten.

20. Backdrive

Mit Backdrive kann erzwungen werden, bestimmte Gelenke in eine gewünschte Position zu bringen, ohne alle Bremsen im Roboterarm lösen zu müssen.

Dies ist manchmal notwendig, wenn der Roboterarm kurz vor einer Kollision steht und die Vibrationen, die mit einem vollständigen Neustart einhergehen, nicht erwünscht sind.

20.1. Backdrive aktivieren: Standard-Teach-Pendant

- 1. Tippen Sie auf dem Initialisieren-Bildschirm auf AN, um die Einschaltsequenz zu starten.
- 2. Wenn sich der Roboterstatus im **Ruhemodus** befindet, drücken und halten Sie die **Freedrive**-Schaltfläche. Der Roboterstatus wechselt zu **Backdrive** (Freifahren).
- 3. Jetzt können Sie starken Druck ausüben, um die Bremse in einem gewünschten Gelenk zu lösen.

Solange die Freedrive-Taste betätigt wird/gedrückt ist, ist Backdrive aktiviert. Der Roboter ist dann schwer zu bewegen.

20.2. Backdrive aktivieren: 3PE-Teach-Pendant

So verwenden Sie die 3PE-Taste für einen Backdrive des Roboterarms:

- 1. Tippen Sie auf dem Initialisieren-Bildschirm auf AN, um die Einschaltsequenz zu starten.
- 2. Wenn sich der Roboter im Leerlauf (Ruhemodus) befindet, drücken Sie leicht auf die 3PE-Taste und halten sie dann leicht gedrückt.

Der Roboterstatus wechselt zu **Backdrive**.

3. Jetzt können Sie starken Druck ausüben, um die Bremse in einem gewünschten Gelenk zu lösen.

Solange die 3PE-Taste leicht gedrückt bleibt, ist Backdrive aktiviert. Die Robotergelenke lassen sich schwer bewegen.

21. Betriebsmodus-Auswahl

21.1. Betriebsmodi

Die Betriebsmodusarten werden aktiviert, wenn Sie einen Drei-Stellungs-Zustimmschalter konfigurieren, ein Passwort setzen, einen Betriebsmodus-konfigurierbaren E/A definieren, oder durch den Dashboard Server (siehe Verwendung des Dashboard Servers auf Seite 117).

Automatikmodus Ist dieser Modus aktiv, kann der Roboter nur vordefinierte Arbeiten verrichten. Der Tab Bewegen und der Freedrive-Modus sind nicht verfügbar, wenn ein dreistufiger Zustimmschalter konfiguriert wurde. Sie können keine Programme und Installationen ändern oder speichern.

WARNUNG

Die Schutzabschaltung im Automatikmodus kann nur im Automatikmodus aktiviert werden und ist dementsprechend nur in diesem Modus aktiv.

Manueller Modus Ist dieser Modus aktiv, können Sie den Roboter über das Register Bewegen, im Freedrive-Modus sowie mit dem Geschwindigkeitsregler programmieren. Sie können Programme und Installationen ändern oder speichern.

Betriebsmodus	Manuell	Automatik
Freedrive	х	*
Roboter mit den Pfeilen auf dem Move-Tab bewegen	х	*
Geschwindigkeitsregler	х	X**
Bearbeiten & Speichern von Programmen & Installationen	x	
Programme ausführen	Reduzierte Geschwindigkeit***	x
Programm von ausgewähltem Knoten starten	х	

* Nur wenn kein Dreistufiger Zustimmschalter konfiguriert ist.

** Der Geschwindigkeitsregler auf dem Ausführungsbildschirm kann in den PolyScope-Einstellungen aktiviert werden.

*** Wenn ein Dreistufiger Zustimmschalter konfiguriert ist, arbeitet der Roboter bei Manueller Reduzierter Geschwindigkeit, es sei denn, Manuelle Hohe Geschwindigkeit wird aktiviert.

HINWEIS

- Roboter von Universal Robots sind möglicherweise nicht mit dreistufigen Zustimmschaltern ausgestattet. Falls diese Vorrichtung aufgrund einer Risikobewertung benötigt wird, muss diese vor dem Robotereinsatz vorgesehen werden.
- Wenn kein Dreistufiger Zustimmschalter konfiguriert wurde, wird die Geschwindigkeit im Manuellen Modus nicht reduziert.

WARNUNG

- Alle abgeschalteten Schutzvorrichtungen müssen wieder voll funktionsfähig gemacht werden, bevor der Automatikmodus ausgewählt wird.
- Soweit möglich sollte der manuelle Betriebsmodus dann aktiviert werden, wenn sich alle Personen außerhalb des Schutzzonenbereichs befinden.
- Die Vorrichtung zum Umschalten der Betriebsmodi muss sich außerhalb des Schutzzonenbereichs befinden.
- Wenn der Roboter auf Automatikmodus geschaltet ist, darf der Schutzzonenbereich nicht betreten werden, solange der Automatikmodus-Schutzzoneneingang nicht konfiguriert wurde.

Die Verfahren zum Konfigurieren der Betriebsmodus-Auswahl werden in den folgenden Teilabschnitten beschrieben. Jede Methode gilt ausschließlich, was bedeutet, dass die Verwendung einer bestimmten Methode zugleich die beiden übrigen Methoden inaktiv macht.

Verwendung des Betriebsmodus-Sicherheitseingangs

- 1. Tippen Sie im Tab "Installation" auf den Punkt "Sicherheits-E/A".
- 2. Konfigurieren Sie den Betriebsmodus-Eingang. Die Konfigurationsoption wird im Dropdown-Menü angezeigt.
 - Der Roboter befindet sich im Automatikmodus, wenn der Betriebsmodus Eingang LOW ist.
 - Der Roboter befindet sich im manuellen Modus, wenn der Betriebsmodus Eingang HIGH ist.

HINWEIS

Der physische Modusauswahlschalter, wenn verwendet, muss sich für die Auswahl vollständig an den Standard ISO 10218-1: Artikel 5.7.1 halten.

PolyScope befindet sich automatisch im manuellen Modus, wenn die Sicherheits-E/A-Konfiguration mit Dreistufigem Zustimmschalter aktiviert ist.

Automatisch zeigt an, dass der Betriebsmodus des Roboters auf "Automatisch"

1. Wählen Sie in der Kopfzeile das entsprechende Profilsymbol, um zwischen den Modi

Verwendung des Dashboard Servers

- 1. Stellen Sie eine Verbindung zum Dashboard Server her.
- 2. Verwenden Sie die Befehle Betriebsmodus einstellen.
 - Betriebsmodus Automatisch einstellen
 - Betriebsmodus Manuell einstellen
 - Betriebsmodus löschen

Weiteres über die Verwendung des Dashboard Servers finden Sie hier <u>http://universal-</u> robots.com/support/.

21.2. Drei-Stellungs-Zustimmschalter

Wenn ein Dreistufiger Zustimmschalter konfiguriert ist und als **Betriebsmodus** der Manuelle Modus eingestellt ist, kann der Roboter nur durch Drücken des Dreistufigen Zustimmschalters bewegt werden. Zugriff auf die Automatikmodus-Schutzabschaltung erhalten Sie durch Anschluss und Konfiguration eines Dreistufigen Zustimmschalters.

Der Dreistufige Zustimmschalter ist im Automatikmodus wirkungslos.

21.2.1. Manueller Modus mit hoher Geschwindigkeit

Die Totmann-Funktion **Manuelle hohe Geschwindigkeit** erlaubt ein temporäres Überschreiten des Grenzwerts von 250 mm/s. Diese Funktion ist nur im Manuellen Modus verfügbar und nur dann, wenn ein Dreistufiger Zustimmschalter konfiguriert ist. Wenn ein Dreistufiger Zustimmschalter konfiguriert ist, aber nicht gedrückt wird, führt der Roboter im Manuellen Modus eine Schutzabschaltung durch. Zum Umschalten zwischen Automatik- und Manuellem Modus muss der Dreistufige Zustimmschalter vollständig losgelassen und erneut gedrückt werden, damit der Roboter die Bewegungsfreigabe erhält.

Verwenden Sie bei Manuell Hoher Geschwindigkeit Sicherheits-Gelenkgrenzen (siehe 22.10. Gelenkgrenzen auf Seite 125) oder Sicherheitsebenen (siehe 22.11. Ebenen auf Seite 125), um den Bewegungsbereich des Roboters einzuschränken.

umzuschalten.

festgelegt ist.

Moduswechsel

22. Sicherheitskonfiguration

22.1. Grundlagen der Sicherheitseinstellungen

In diesem Kapitel wird erläutert, wie die Sicherheitseinstellungen des Roboters aufgerufen werden. Sie besteht aus Optionen, mit denen Sie die Sicherheitskonfiguration des Roboters festlegen können.

WARNUNG

Bevor Sie die Sicherheitseinstellungen des Roboters konfigurieren können, muss Ihr Integrator eine Risikobewertung durchführen, mit der die Sicherheit des Personals und der Geräte um den Roboter herum sichergestellt werden kann. Bei einer Risikobewertung handelt es sich um eine Begutachtung aller Arbeitsvorgänge über die Lebensdauer des Roboters gesehen. Diese erfolgt, um die richtigen Sicherheitseinstellungen festzulegen (siehe Hardware-Installationshandbuch). Unter Berücksichtigung der Risikobewertung des Integrators müssen Sie folgendes festlegen.

- 1. Der Integrator hat dafür zu sorgen (z.B. durch Installation eines Passwortschutzes), dass es Unbefugten nicht möglich ist, Änderungen an der Sicherheitskonfiguration vorzunehmen.
- 2. Nutzung und Konfiguration der sicherheitsbezogenen Funktionen und Schnittstellen für eine bestimmte Roboteranwendung (siehe Hardware-Installationshandbuch).
- 3. Sicherheitseinstellungen für das Einstellen und Anlernen, bevor der Roboterarm zum ersten Mal eingeschaltet wird.
- 4. Alle Sicherheitseinstellungen, die über diesen Bildschirm und in den Unterregistern zugänglich sind.
- 5. Der Integrator muss sicherstellen, dass alle Änderungen an den Sicherheitseinstellungen mit der Risikobewertung konform sind.

22.1.1. Sicherheitskonfiguration aufrufen

Hinweis: Die Sicherheitseinstellungen sind passwortgeschützt und können nur konfiguriert werden, nachdem ein Passwort festgelegt und anschließend benutzt wurde.

- 1. Klicken Sie in der Kopfzeile von PolyScope auf das Symbol Installation.
- 2. Tippen Sie im Menü links auf Sicherheit.
- 3. Stellen Sie sicher, dass der Bildschirm **Roboter-Limits** zwar erscheint, jedoch die Einstellungen nicht aufrufbar sind.
- 4. Wenn zuvor ein **Sicherheitspasswort** festgelegt wurde, geben Sie das Passwort ein und drücken Sie **Entsperren**, um die Einstellungen zugänglich zu machen. Hinweis: Sobald die

Sicherheitseinstellungen freigeschaltet sind, werden sämtliche Einstellungen aktiv.

5. Tippen Sie auf **Sperren** oder navigieren Sie vom Sicherheitsmenü zu einer anderen Stelle, um die Sicherheitseinstellungen wieder zu sperren.

Allgemein	! GEFAHR					
Sicherheit	Die Verwendung von Sicherheitpar	ametern, die von denen de	s Intear	ators in der Risikobeurte	eiluna festaeleater	n Parametern abweich
Roboter- Limits	können Risiken und Gefährdunger	n verursachen, die sich mit d	diesen P	aramtern nicht angeme	ssen verringern o	der beseitigen lassen.
Gelenkgre	🔘 Werksvoreinstellungen					
Ebenen		Stark eingeschränk	t	1	Schwach einges	chränkt
Werkzeugpo						
Werkzeugric						
E/A						
Hardware	Grenzwert	Normal		Reduziert		
Zustimm-	Leistung	300	W	200	\mathbb{W}	
taster	Impuls	25,0	kg m/s	10,0	kg m/s	
Sichere	Stopzeit	400		300	ms	
Koordinatonava	Stopweg	500		300) mm	
Koorunatensys	Werkzeuggeschwindigkeit	1500		750) mm/s	
Feldbus	Kraft am TCP	150,0	N	120,0	N	
	Ellbogengeschwindigkeit	1500		750	mm/s	
	Kraft am Ellbogen	150,0	N	120,0	N	
					_	

Weitere Informationen über das Sicherheitssystem finden Sie im Hardware-Installationshandbuch.

22.2. Sicherheitspasswort festlegen

Zum Entsperren aller Sicherheitseinstellungen, aus denen Ihre Sicherheitskonfiguration besteht, müssen Sie ein Passwort definieren. Wenn kein Sicherheitspasswort gilt, werden Sie aufgefordert, eines festzulegen.

- 1. Drücken Sie in der PolyScope Kopfzeile oben rechts das **Hamburger-Menü** und wählen Sie **Einstellungen**.
- 2. Drücken Sie links im Bildschirm im blauen Menü auf Passwort und wählen Sie Sicherheit.
- 3. Geben Sie unter Neues Passwort ein Passwort ein.
- 4. Geben Sie unter **Neues Passwort bestätigen** das gleiche Passwort erneut ein und wählen Sie Übernehmen.
- 5. Drücken Sie im blauen Menü unten rechts auf **Beenden**, um zum vorherigen Bildschirm zurückzukehren.

Sie können auf das Register **Sperren** drücken, um alle Sicherheitseinstellungen wieder zu sperren. Alternativ können Sie aber auch zu einem anderen Bildschirm als dem Sicherheitsmenü wechseln.

Sicherheitspasswort	Entsperren Sperren	I.

22.3. Änderung der Sicherheitskonfiguration

Änderungen an den Einstellungen der Sicherheitskonfiguration müssen mit der durch den Integrator durchgeführten Risikobewertung konform sein (see Hardware-Installationshandbuch). Empfohlene Verfahrensweise:

- 1. Stellen Sie sicher, dass die Änderungen im Einklang mit der Risikobewertung des Integrators sind.
- 2. Passen Sie die Sicherheitseinstellungen an die Risikobewertung des Integrators an.
- 3. Stellen Sie sicher, dass die Einstellungen auch übernommen wurden.
- 4. Fügen Sie den folgenden Text in das Bedienerhandbuch ein:

"Stellen Sie vor jeglichen Arbeiten in der Nähe des Roboters sicher, dass die Sicherheitskonfiguration wie erwartet agiert. Dies lässt sich beispielsweise feststellen, indem geprüft wird, ob sich die Sicherheitsprüfsumme oben rechts in PolyScope geändert hat."

22.4. Neue Sicherheitskonfiguration anwenden

Der Roboter ist ausgeschaltet, während Sie die Konfiguration ändern. Ihre Änderungen treten erst in Kraft, wenn Sie auf **Übernehmen** klicken. Der Roboter kann erst wieder eingeschaltet werden, nachdem Sie **Übernehmen und Neustart** oder **Änderungen rückgängig machen** gewählt haben. Mit dem letzten Befehl können Sie die Sicherheitskonfiguration Ihres Roboters einsehen, die aus Sicherheitsgründen in einem Popup in SI-Einheiten angezeigt wird. Wenn Sie Ihre Sichtprüfung abgeschlossen haben, können Sie die **Sicherheitskonfiguration bestätigen**. Die Änderungen werden dann automatisch als Bestandteil der aktuellen Roboterinstallation gespeichert.

22.5. Sicherheitsprüfsumme

Das Symbol **Sicherheitsprüfsumme** zeigt die Sicherheitskonfiguration an, die für Ihren Roboter eingesetzt wird. Gelesen wird sie von oben nach unten und von links nach rechts, z. B. BF4B. Ein anderer Text und/oder andere Farben weisen auf Änderungen an der eingesetzten Sicherheitskonfiguration hin.

Die **Sicherheitsprüfsumme** ändert sich, wenn Sie die Einstellungen in den **Sicherheitsfunktionen** ändern, weil die **Sicherheitsprüfsumme** nur von den Sicherheitseinstellungen generiert wird.

Damit die Änderungen an der **Sicherheitsprüfsumme** übernommen werden können, müssen Sie Ihre Änderungen an der **Sicherheitskonfiguration** übernehmen.

22.6. Einstellungen im Menü Sicherheit

In diesem Abschnitt werden die Einstellungen des Menüs Sicherheit erläutert, die die Sicherheitskonfiguration des Roboters bestimmen.

22.7. Roboter-Limits

Mit Roboter-Limits beschränken generell Roboterbewegungen. Im Bildschirm "Roboter-Limits" gibt es zwei Konfigurationsmöglichkeiten: Werksvoreinstellungen und Detaillierte Einstellungen.

1. Unter Werksvoreinstellungen können Sie mit dem Schieberegler eine vordefinierte Sicherheitseinstellung auswählen. In der Tabelle werden die jeweils entsprechenden Werte angezeigt, die von **Stark eingeschränkt** zu **Schwach eingeschränkt** reichen

	HINWEIS Die Werte sind nur Vorschl Risikobewertung.	äge und kein Ersatz für eine umfassende	
10		PROGRAMM <unbenannt>* 🕞 🎦 🗖</unbenannt>	

Allgemein	! GEFAHR					
Sicherheit	Die Verwendung von Sicherheitpa	rametern, die von denen de	es Integr	ators in der Risikobeu	rteilung festge	elegten Parametern abweich
Roboter- Limits	können Risiken und Gefährdunger	n verursachen, die sich mit	diesen F	aramtern nicht angen	nessen verring	jern oder beseitigen lassen.
Gelenkgre	🔘 Werksvoreinstellungen					
Ebenen	Stark eingeschränkt					
Werkzeugpo		5				5
Werkzeugric						
E/A						
Hardware	Grenzwert	Normal		Reduziert		
Zustimm-	Leistung	300) W	2	00 W	
taster	Impuls	25,0) kg m/s	10),0 kg m/s	
Sichere	Stopzeit	400	ms	3	00 ms	
Keending tenous	Stopweg	500) mm	3	00 mm	
Koordinatensys	Werkzeuggeschwindigkeit	1500	mm/s	7.	50 mm/s	
Feldbus	Kraft am TCP	150,0	N	120	,0 N	
	Ellbogengeschwindigkeit	1500	mm/s	7.	50 mm/s	
	Kraft am Ellbogen	150,0	N	120), 0 N	
	Cicharbaitenar	ana ana ant	Ent	an arran		Übernehm
	Sicherheitspas	swort	Ent	sperren Sperre	n	Ubernenm

2. Unter Detaillierte Einstellungen können Sie Grenzwerte für die Funktionsweise des Roboters festlegen und die damit verbundene Toleranz im Auge behalten.

Leistung

begrenzt die maximale mechanische Leistungskraft, die vom Roboter im Arbeitsumfeld aufgebracht wird. Dieser Grenzwert berücksichtigt die Nutzlast als Teil des Roboters und nicht des Arbeitsumfelds.

Impuls

begrenzt das maximale Drehmoment des Roboters.

Stopzeit

begrenzt die maximale Dauer, die der Roboter bis zum Stillstand benötigt, z. B. bei einem Not-Aus.

Stopweg

begrenzt die maximale Strecke, die das Roboterwerkzeug oder der Ellbogen beim Anhalten zurücklegen kann.

HINWEIS

Die Beschränkung der Nachlaufzeit und des Nachlaufwegs wirkt sich auf die Robotergeschwindigkeit insgesamt aus. Beispiel: Wenn die Nachlaufzeit auf 300 ms eingestellt ist, wird die Höchstgeschwindigkeit des Roboters eingeschränkt, damit der Roboter innerhalb von 300 ms zum Stillstand abbremsen kann.

Werkzeuggeschwindigkeit

begrenzt die Höchstgeschwindigkeit des Roboterwerkzeugs.

Kraft am TCP

begrenzt die maximale Kraft, die vom Roboterwerkzeug in Klemmsituationen aufgebracht wird.

Ellbogengeschwindigkeit

begrenzt die Höchstgeschwindigkeit des Roboterellenbogens.

Kraft am Ellbogen

begrenzt die maximale Kraft, die vom Ellbogen auf die Arbeitsumgebung ausgeübt wird.

Die Werkzeuggeschwindigkeit und das Moment werden am Werkzeugflansch und in der Mitte der beiden benutzerdefinierten Werkzeugpositionen begrenzt, siehe 22.14. Werkzeugposition auf Seite 129.

Ausführen Programm Installation		PROGRAMM < Installation d	unbenannt>* efault_1*	Neu Öffnen S	peichern					
> Allgemein	! GEFAHR									
✔ Sicherheit	Die Verwendung von Sicherheitpara	metern, die von denen de	s Integrators	in der Risikobeurte	ilung festgelegten Parame	tern abweichen,				
Roboter- Limits	können Risiken und Gefährdungen v	verursachen, die sich mit o	diesen Param	tern nicht angemes	sen verringern oder bese	itigen lassen.				
Gelenkgre	O Werksvoreinstellungen									
Ebenen		Stark eingeschränkt	Schwach eingeschränkt							
Werkzeugpo		J			J					
Werkzeugric	Detailierte Einstellungen									
E/A										
Hardware	Grenzwert	Normal	Redu	uziert						
Zustimm-	Leistung	300	W	200	w					
taster	Impuls	25,0	kg m/s	10,0	kg m/s 🔊 🔊					
Sichere Home-Position	Stopzeit	400	ms	300	ms					
> Koordinatensys	Stopweg	500	mm	300	mm					
	Werkzeuggeschwindigkeit	1500	mm/s	750	mm/s					
	Kraft am TCP	150,0	N	120,0	N					
	Ellbogengeschwindigkeit	1500	mm/s	750	mm/s					
	Kraft am Ellbogen	150,0	N	120,0	N					
	Sicherheitspass	wort	Entsperi	ren Sperren		Übernehmen				
Ausschalten	Geschwindigk	eit	100%	00	O s					

HINWEIS

Alle Roboter-Limits können Sie auf die **Werksvoreinstellungen** zurückstellen, sodass wieder die Standardwerte gelten.

22.8. Sicherheitsmodi

Unter normalen Bedingungen, d. h. wenn kein Sicherheitsstopp aktiv ist, arbeitet das Sicherheitssystem in einem Sicherheitsmodus, der mit einer Reihe von Sicherheitsgrenzen verbunden ist:

Normaler Modus ist der Sicherheitsmodus, der standardmäßig aktiv ist

Reduzierter Modus ist aktiv, wenn sich der Werkzeugmittelpunkt (TCP) des Roboters in einer Ebene mit einem Auslöser für reduzierten Modus befindet (siehe 22.11. Ebenen auf der gegenüberliegenden Seite) oder bei der Auslösung durch einen konfigurierbaren Eingang (siehe 22.16. E/A auf Seite 133)

Wiederherstellungsmodus wird aktiviert, wenn die Sicherheitsbegrenzung des aktiven Grenzwertes überschritten wird. Der Roboterarm führt einen Stopp der Kategorie 0 aus. Wenn eine aktive Sicherheitsgrenze wie eine Gelenkpositionsgrenze oder eine Sicherheitsebene bereits beim Einschalten des Roboterarms überschritten ist, wird er im Wiederherstellungsmodus gestartet. So kann er leicht in den Bereich innerhalb der Sicherheitsgrenzen bewegt werden. Im Wiederherstellungsmodus ist die Bewegung des Roboterarms durch einen festen Grenzwert eingeschränkt, den Sie nicht ändern können. Details zu den Grenzwerten des Wiederherstellungsmodus finden Sie im Hardware-Installationshandbuch.

WARNUNG

Die Grenzwerte für die **Gelenkposition**, **Werkzeugposition** und **Werkzeugausrichtung** sind im Wiederherstellungsmodus deaktiviert. Lassen Sie daher beim Bewegen des Roboterarms äußerste Vorsicht walten.

Im Menü des Bildschirms Sicherheitskonfiguration können Sie separate Gruppen von Sicherheitsgrenzen für den Normalen und den Reduzierten Modus festlegen. Die Werkzeug- und Gelenkgrenzwerte müssen im reduzierten Modus bei Geschwindigkeit und Moment restriktiver sein als im normalen Modus.

22.9. Toleranzen

In der Sicherheitskonfiguration sind die Grenzwerte für das Sicherheitssystem festgelegt. Das *Sicherheitssystem* erhält die Werte von den Eingabefeldern und erfasst Verstöße, falls diese Werte überschritten werden. Die Robotersteuerung versucht, Verstöße durch das Veranlassen vorausschauender Stopps oder durch Verringerung der Geschwindigkeit zu vermeiden. Das bedeutet, dass Bewegungen, die sehr nah bei einem Grenzwert liegen, unter Umständen nicht programmgemäß ausgeführt werden.

WARNUNG

Toleranzen sind abhängig von der Softwareversion. Durch eine Softwareaktualisierung können sich die Toleranzen u. U. ändern. Informationen über Versionsänderungen der Software finden Sie in den Versionshinweisen.

22.10. Gelenk- grenzen

Mit Gelenkgrenzen können Sie die Bewegung einzelner Robotergelenke im Gelenk-Arbeitsbereich einschränken, z. B. die Gelenkdrehposition und die Drehgeschwindigkeit. Zwei Optionen stehen unter Gelenkgrenzen zur Verfügung: **Maximale Geschwindigkeit** und **Positionsbereich**.

Der Positionsbereich von Handgelenk 3 ist standardmäßig unbegrenzt. Wenn die am Roboter angebrachten Kabel verwendet werden, muss zunächst das Kontrollkästchen **Endlosrotation für Handgelenk 3 aktivieren** deaktiviert werden, um Spannungen auf den Kabeln sowie Sicherheitsstopps zu vermeiden.

- 1. Unter maximaler Geschwindigkeit legen Sie die maximale Winkelgeschwindigkeit für jedes Gelenk fest.
- Unter Positionsbereich legen Sie den Positionsbereich f
 ür jedes Gelenk fest. Die Eingabefelder f
 ür den Reduzierten Modus sind hier deaktiviert, wenn keine Sicherheitsebene bzw. kein konfigurierbarer Eingang zu dessen Auslösung vorhanden ist. Diese Begrenzung ermöglicht eine sicherheitsbezogene weiche Achsenbegrenzung des Roboters.

Allgemein	Positionsbereic	h								
Sicherheit	Gelenke	Bereich	Normaler M	odus	Reduzierte	er Modus				
Roboter-			Minimum	Maximum	Minimum	Maximum				
Calankana	Basis	-363 — 363 °	-363	363	-363	363	+2 °/-2 °			
Gelenkgre	Schulter	-363 — 363 °	-363	363	-363	363	+2°/-2°			
Ebenen	Ellbogen	-363 — 363 °	-363	363	-363	363	+2 °/-2 °			
Werkzeugpo	Handgelenk 1	-363 — 363 °	-363	363	-363	363	+2 °/-2 °			
Werkzeugric	Handgelenk 2	-363 — 363 °	-363	363	-363	363	+2°/-2°			
E/A	Handgelenk 3	-363 — 363 °	-363	363	-363	363	+2 °/-2 °			
Hardware										
Zustimm-	Maximale Gesch	hwindigkeit								l
Sichere	Gelenke	Maximu	m Normal	er Modus	Reduzierter Mo	dus				
Home-Position	Basis	Max.: 191 °/s	191		191	-11 °/s				
Koordinatensys	Schulter	Max.: 191 °/s	191		191	-11 °/s				
Feldbus	Ellbogen	Max.: 191 °/s	191		191	-11 °/s				
	Handgelenk 1	Max.: 191 °/s	191		191	-11 °/s				
	Handgelenk 2	Max.: 191 °/s	191		191	-11 °/s				
	Handgelenk 3	Max.: 191 °/s	191		191	-11 °/s				
		Sicherheitspasswo	rt	Ent	sperren Spe	rren		Über	nehn	r

22.11. Ebenen

HINWEIS

Das Konfigurieren von Ebenen basiert vollständig auf Funktionen. Es ist ratsam, alle Funktionen zu erstellen und zu benennen, bevor die Sicherheitskonfiguration bearbeitet wird, da der Roboter abgeschaltet wird, sobald das Register Sicherheit entsperrt wurde. Eine Roboterbewegung ist dann nicht möglich.

Sicherheitsebenen schränken den Arbeitsbereich des Roboters ein. Sie können bis zu acht Sicherheitsebenen definieren und dazu das Roboterwerkzeug und die Ellbogenbewegung einschränken. Die Ellbogenbewegung können Sie auch für jede Sicherheitsebene begrenzen und durch Deaktivieren des Kontrollkästchens aufheben. Vor dem Konfigurieren von Sicherheitsebenen müssen Sie eine Funktion in der der Roboterinstallation definieren (siehe). Die Funktion kann anschließend in den Bildschirm Sicherheitsebene übernommen und konfiguriert werden.

WARNUNG

Das Definieren von Sicherheitsebenen begrenzt nur die definierten Werkzeugbereiche und den Ellbogen, jedoch nicht den Roboterarm insgesamt. Mit anderen Worten wird durch Festlegung einer Sicherheitsebene nicht dafür gesorgt, dass sich auch andere Teile des Roboterarms an diese Beschränkung halten.

22.11.1. Betriebsarten

Zu jeder Ebene können Sie restriktive **Betriebsarten** anhand der unten aufgelisteten Symbole festlegen.

Deaktiviert

Die Sicherheitsebene ist in diesem Status zu keiner Zeit aktiv.

🛯 Normal

Wenn sich das Sicherheitssystem im Normalen Modus befindet, ist eine normale Ebene aktiv und dient als strenge Positionsbegrenzung.

Reduziert

Wenn sich das Sicherheitssystem im Reduzierten Modus befindet, ist eine Ebene mit reduziertem Modus aktiv und dient als strenge Positionsbegrenzung.

Normal & Reduziert

Wenn sich das Sicherheitssystem im Normalen oder Reduzierten Modus befindet, ist eine Ebene mit normalem oder reduziertem Modus aktiv und dient als strenge Positionsbegrenzung.

🖪 Auslöser Reduzierter Modus

Die Sicherheitsebene veranlasst das Sicherheitssystem zum Umschalten auf den Reduzierten Modus, wenn das Werkzeug oder der Ellbogen des Roboters die Ebenengrenzen überschreitet.

Anzeigen

Drücken dieses Symbols wird die Darstellung der Sicherheitsebene in der Grafik eingeblendet bzw. verborgen.

💼 Löschen

Löscht die erstellte Sicherheitsebene. Keine Rückgängig/Wiederholen-Aktion vorhanden. Wenn eine Ebene irrtümlich gelöscht wurde, muss sie neu erstellt werden.

Über dieses Symbol können Sie die Bezeichnung der Ebene ändern.

22.11.2. Sicherheitsebenen konfigurieren

- 1. Klicken Sie in der Kopfzeile von PolyScope auf Installation.
- 2. Klicken Sie im Seitenmenü links im Bildschirm auf "Sicherheit" und wählen Sie Ebenen.
- 3. Klicken oben rechts im Feld "Ebenen" auf Ebene hinzufügen.
- 4. Legen Sie unten rechts im Feld **Eigenschaften** einen Namen und Einschränkungen fest und kopieren Sie die Koordinatensysteme.

Die Option Koordinatensysteme kopieren bietet nur "Undefiniert" und "Basis". Eine konfigurierte Sicherheitsebene können Sie durch Auswahl von Undefiniert zurücksetzen

Wenn die kopierte Funktion im Bildschirm Funktionen geändert wird, erscheint ein Warnsymbol rechts neben dem Text Kopierfunktion. Dies zeigt an, dass die Funktion nicht synchronisiert wurde, d. h. die Angaben im Eigenschaftsfeld wurden nicht aktualisiert und berücksichtigen noch nicht die Änderungen, die an der Eigenschaft vorgenommen wurden.

22.11.3. Ellbogen

Sie können **Ellbogen begrenzen** aktivieren, um das Ellbogengelenk des Roboters daran zu hindern, eine Ihrer definierten Ebenen zu überschreiten. Wenn Sie Ellbogen begrenzen deaktivieren, darf der Ellbogen die Ebenen überschreiten.

22.11.4. Farbcodes

Grau

Ebene ist konfiguriert jedoch Deaktiviert (A)

Gelb & Schwarz

Normale Ebene (B)

Blau & Grün

Auslöserebene (C)

Schwarzer Pfeil

Die Seite der Ebene, auf der sich das Werkzeug und/oder der Ellbogen aufhalten darf (bei Normalen Ebenen)

Grüner Pfeil

Die Seite der Ebene, auf der sich das Werkzeug und/oder der Ellbogen aufhalten darf (bei Auslöseebenen)

Grauer Pfeil

Die Seite der Ebene, auf der sich das Werkzeug und/oder der Ellbogen aufhalten darf (bei deaktivierten Ebenen)

22.12. Freedrive

Mit Freedrive kann der Roboterarm manuell in die gewünschten Positionen und/oder Posen gezogen werden. Die Gelenke sind leicht beweglich, da die Bremsen gelöst sind. Während der Roboterarm manuell bewegt wird, befindet er sich im Freedrive-Modus (siehe 21.1. Betriebsmodi auf Seite 115).

Wenn sich der Roboterarm im Freedrive-Modus einer vordefinierten Grenze oder Ebene nähert (siehe 22.11. Ebenen auf Seite 125), steigt der Widerstand. Dadurch fühlt es sich schwer an, den Roboter in Position zu ziehen. Sie haben folgende Möglichkeiten, Freedrive zu aktivieren:

- Freedrive-Schaltfläche
- Verwenden Sie E/A-Aktionen (siehe)
- Verwenden Sie die Freedrive-Schaltfläche auf dem Bildschirm der Registerkarte "Bewegen" (siehe 26.2.4. Freedrive auf Seite 244)

22.12.1. Freedrive-Schaltfläche

- 1. Drücken und halten Sie die Schaltfläche Freedrive, die sich auf dem Teach Pendant befindet.
- 2. Bewegen Sie den Roboterarm wie gewünscht.

22.13. Backdrive

Während der Initialisierung des Roboterarms können kleinere Vibrationen auftreten, wenn die Roboterbremsen gelöst werden. In bestimmten Situationen, wenn z. B. der Roboter kurz vor einer Kollision steht, sind diese Erschütterungen nicht erwünscht. Mit der Funktion **Backdrive** (Freifahren) kann dann erzwungen werden, dass bestimmte Gelenke in die gewünschte Position gebracht werden, ohne alle Bremsen im Roboterarm lösen zu müssen.

22.13.1. Backdrive aktivieren:

- 1. Tippen Sie auf dem Initialisieren-Bildschirm auf AN, um die Einschaltsequenz zu starten.
- 2. Wenn sich der Roboterstatus im **Ruhemodus** befindet, drücken und halten Sie die **Freedrive**-Schaltfläche. Der Roboterstatus wechselt zu **Backdrive** (Freifahren).
- 3. Die Bremsen werden nur in den Gelenken gelöst, auf die erheblicher Druck ausgeübt wird. Solange die **Freedrive**-Schaltfläche gedrückt wird bzw. aktiv ist. Wenn **Backdrive** verwendet wird, ist der Roboter schwer zu bewegen.

22.14. Werkzeugposition

Der Bildschirm Werkzeugposition ermöglicht eine kontrollierte Beschränkung von Werkzeugen und/oder Zubehörteilen, die am Ende des Roboterarms angebaut sind.

Unter Roboter können Sie Ihre Änderungen anschaulich begutachten.

Unter Werkzeug können Sie bis zu zwei Werkzeuge definieren und konfigurieren.

Werkzeug_1 ist das Standardwerkzeug, das mit den Werten x=0,0, y=0,0, z=0,0 und dem Radius=0,0 definiert ist. Diese Werte stehen für den Werkzeugflansch des Roboters.

Unter "TCP kopieren" können Sie auch Werkzeugflansch auswählen und die Werkzeugwerte wieder auf 0 setzen.

Am Werkzeugflansch ist eine Standardkugel definiert.

Ausführen Programm	Protokoll	PROGRAMM <unbenannt>*</unbenannt> INSTALLATION default_1*	Neu Öffnen Spei	
 Allgemein Sicherheit Roboter- Limits Gelenkgre Ebenen Werkzeugro Werkzeugro E/A Hardware Zustimm- taster Sichere Home-Position Koordinatensys Feldbus 			+	Werkzeug (1 of 3) Werkzeugflansch + Werkzeug hinzufügen Ø Werkzeugflansch Radius (max.: 300mm) 0,0 mm TCP kopleren Werkzeugflansch Position bearbeiten X 0,0 mm Y 0,0 mm Z 0,0 mm
	Sicherheitspasswort	Entsperr	ren Sperren	Übernehmen
Ausschalten	Geschwindigkeit 🥌	100%		Simulation

Bei benutzerdefinierten Werkzeugen kann folgendes geändert werden:

Radius zum Ändern des Radius der Werkzeugkugel. Der Radius wird bei der Verwendung von Sicherheitsebenen berücksichtigt. Durchquert ein Punkt in dem Bereich eine Auslöseebene für den reduzierten Modus, schaltet der Roboter auf *Reduzierter* Modus um. Das Sicherheitssystem verhindert, dass eine Sicherheitsebene von einem Punkt in dem Bereich durchquert wird (siehe 22.11. Ebenen auf Seite 125).

Position zum Ändern der Lage des Werkzeugs relativ zum Werkzeugflansch des Roboters. Die Position wird bei den Sicherheitsfunktionen Werkzeuggeschwindigkeit, Werkzeugmoment, Nachlaufweg und Sicherheitsebenen berücksichtigt.

Sie können einen bestehenden Werkzeugmittelpunkt als Ausgangsbasis zur Definition neuer Werkzeugpositionen heranziehen. Eine Kopie des bestehenden Werkzeugmittelpunkts, der im Menü Allgemein des Bildschirms TCP vordefiniert ist, kann über das Menü Werkzeugposition in der Dropdown-Liste TCP kopieren aufgerufen werden.

Wenn Sie die Werte in den Eingabefeldern **Position bearbeiten** ändern, steht anstatt des Namens für den Werkzeugmittelpunkt (TCP) im Dropdown-Menü **Benutzerdefiniert** (Anwendungsspezifisch), um darauf hinzuweisen, dass sich der kopierte TCP und der aktuell eingegebene Grenzwert unterscheiden. Der ursprüngliche TCP ist in der Dropdown-Liste nach wie vor eingetragen und kann wieder ausgewählt werden, um die Werte wieder auf die ursprüngliche Position umzustellen. Die Auswahl im Dropdown-Menü TCP kopieren hat keinen Einfluss auf den Namen des Werkzeugs. Wenn Sie die Änderungen im Bildschirm Werkzeugposition übernommen haben, erscheint rechts neben dem Text "TCP kopieren" ein Warnsymbol, sobald Sie versuchen, den kopierten TCP im TCP Konfigurationsbildschirm zu ändern. Dies zeigt an, dass der TCP nicht synchronisiert wurde, d. h. die Angaben im Eigenschaftsfeld wurden nicht aktualisiert und berücksichtigen noch nicht die Änderungen, die am TCP vorgenommen wurden. Zum Synchronisieren des TCP drücken Sie das Sync-Symbol (siehe 25.2. TCP-Konfiguration auf Seite 207).

Um ein Werkzeug zu definieren und einwandfrei einzusetzen, muss der TCP nicht synchronisiert werden.

Die Werkzeugbezeichnung können Sie ändern, indem Sie auf den Stift neben dem angezeigten
IR

Werkzeugnamen drücken. Innerhalb eines zulässigen Bereichs von 0-300 m können Sie auch den Radius festlegen. Die Bereichsgrenze wird in der Grafik je nach Größe des Radius entweder als Punkt oder als Kugel dargestellt.

22.15. TCP-Ausrichtung

Der Bildschirm Werkzeugrichtung kann verwendet werden, um den Winkel zu begrenzen, in dessen Richtung das Werkzeug zeigt. Die Begrenzung wird durch einen Konus definiert, der relativ zur Roboterarm-Basis eine fixe Orientierung aufweist. Bei den Bewegungsabläufen des Roboterarms wird die Richtung des Werkzeugs eingeschränkt, damit es den definierten konischen Bereich nicht überschreitet. Die Standardrichtung des Werkzeugs liegt auf der Z-Achse des Werkzeug-Ausgangsflanschs. Durch Angabe von Neige- und Schwenkwinkeln kann diese geändert werden.

Vor dem Konfigurieren der Begrenzung müssen Sie einen Punkt oder eine Ebene in der Roboterinstallation definieren (siehe 25.17. Koordinatensys auf Seite 227). Die Funktion kann anschließend kopiert und ihre Z-Achse als Mitte des Begrenzungskonus verwendet werden.

HINWEIS

Die Konfiguration der Werkzeugrichtung basiert auf Funktionen. Die gewünschte(n) Funktion(en) sollten Sie zuerst erstellen, bevor Sie die Sicherheitskonfiguration ändern, denn sobald das Register Sicherheit entsperrt wurde, schaltet sich der Roboterarm ab, sodass keine neuen Funktionen mehr definiert werden können.

22.15.1. Begrenzungseinstellungen

Die Begrenzung der Werkzeugrichtung besitzt drei konfigurierbare Eigenschaften:

- 1. Konusmitte: Zur Definition der Konusmitte können Sie im Dropdown-Menü eine Punkt- oder Ebenenfunktion auswählen. Die Z-Achse der gewählten Funktion wird als Richtung für die Zentrierung des Konus verwendet.
- 2. Konuswinkel: Sie können festlegen, um wie viele Grad der Roboter von der Mitte abweichen darf.

```
Deaktivierte Werkzeugrichtungsbegrenzung 
ist nie aktiv
```

```
Normale Werkzeugrichtungsbegrenzung ist nur aktiv, wenn sich das Sicherheitssystem im Normalen Modus befindet.
```

- Reduzierte Werkzeugrichtungsbegrenzung ist nur aktiv, wenn sich das Sicherheitssystem im Reduzierten Modus befindet.
- Normale & Reduzierte Werkzeugrichtungsbegrenzung ist aktiv, wenn sich das Sicherheitssystem im Normalen Modus oder im Reduzierten Modus befindet.

Sie können für die Werte wieder den Standard einstellen bzw. rückgängig machen, indem Sie die Kopierfunktion wieder auf "Undefiniert" setzen.

22.15.2. Eigenschaften Werkzeug

Standardmäßig zeigt das Werkzeug in die gleiche Richtung wie die Z-Achse des Werkzeug-Ausgangsflanschs. Das kann durch Angaben von zwei Winkeln geändert werden: **Neigungswinkel**: Wie weit die Z-Achse des Ausgangsflanschs in Richtung der X-Achse des Ausgangsflanschs geneigt werden soll

Schwenkwinkel: Wie weit die geneigte Z-Achse um die ursprüngliche Ausgangflansch-Z-Achse gedreht werden soll.

Als Alternative kann die Z-Achse eines vorhandenen Werkzeugmittelpunkts (TCP) durch Auswahl des TCP aus dem Dropdown-Menü kopiert werden.

22.16. E/A

Die E/A sind zwischen den Eingängen und Ausgängen aufgeteilt und werden paarweise so zusammengefasst, dass jede Funktion eine Kategorie 3 und PLd E/A bereitstellt.

:herheit	Eingangssignal	Funktionszuweisung	
Roboter-			
Gelenkare	config_in(0), config_in(1)	Reduzierter Modus 👻	
Ebenen	config_in(2), config_in(3)	Schutz-Reset	
Workzowano	coning_in(4), coning_in(5)	Nicht zugewiesen	
Werkzeugpo	comp_rest comp_revi	Nork zügewiesen	
werkzeugnc	Ausgangssignal	Funktionszuweisung	OSSD
E/A			
Hardware	config_out[0], config_out[1]	Roboter bewegt sich	
Zustimm-	config_out[2], config_out[3]	System-NotHat:	
Sichere	config_out[4], config_out[5]	Nicht zugewiesen 👻	
Home-Position	config_out[6], config_out[7]	Nicht zugewiesen	
ordinatensys			
ldbus			

22.16.1. Eingangssignale

Folgende Sicherheitsfunktionen können mit den Eingangssignalen benutzt werden:

System-NotHalt

Dies ist eine Not-Aus-Vorrichtung, die als Alternative zum Teach Pendant verwendet werden kann und die gleiche Funktion bietet, falls das Gerät mit der ISO 13850 konform ist.

Reduzierter Modus

Alle Sicherheitsgrenzen können entweder im normalen oder im reduzierten Modus angewendet werden (siehe 22.8. Sicherheitsmodi auf Seite 124). Sind diese konfiguriert, wird ein LOW-Signal an die Eingänge gesendet. Das Sicherheitssystem wechselt dadurch in den Reduzierten Modus. Der Roboterarm bremst ab, um dem im Reduzierten Modus festgelegten Grenzwert zu entsprechen. Das Sicherheitssystem sorgt dafür, dass der Roboter innerhalb von 0,5 s nach dem Ansteuern des Eingangs die Grenzwerte des Reduzierten Modus einhält.

Sollte der Roboterarm eine der Grenzen des Reduzierten Modus weiterhin überschreiten, führt er einen Stopp der Kategorie 0 aus. Der Wechsel in den normalen Modus geschieht auf gleiche Weise. Auch Auslöseebenen können einen Wechsel in den Reduzierten Modus auslösen.

3-Stellungs-Zustimmschalter

Im manuellen Modus muss ein externer dreistufiger Zustimmschalter gedrückt und in der Mittelposition gehalten werden, um den Roboter zu bewegen.

Wenn Sie einen eingebauten Drei-Stellungs-Zustimmschalter verwenden, muss die Taste gedrückt und und in der Mittelposition gehalten werden, um den Roboter zu bewegen.

Betriebsart

Wenn dieser Eingang definiert ist, kann er zum Umschalten zwischen Automatikmodus und Manuellem Modus verwendet werden (siehe 21.1. Betriebsmodi auf Seite 115).

Schutz-Reset

Wenn ein Schutzstopp auftritt, sorgt dieser Ausgang dafür, dass der Schutzstopp-Status gehalten wird, bis ein Reset ausgelöst wird.

Schutzstop für Betriebsart Automatik

Wenn konfiguriert, führt eine **Automatikmodus-Schutzabschaltung** einen Schutzstopp durch, sobald die Eingangskontakte LOW sind und NUR dann, wenn sich der Roboter im Automatikmodus befindet.

Schutzreset für Betriebsart Automatik

Wenn eine Automatikmodus-Schutzabschaltung auftritt, bleibt der Roboter im Automatikmodus im Status Schutzabschaltung, bis eine steigende Flanke an den Eingangskontakten einen Reset auslöst.

WARNUNG

- Wenn Sie den standardmäßigen Schutzreset-Eingang deaktivieren, ist der Roboterarm nicht länger durch den Schutzstopp gesichert, da der Eingang HIGH ist. Ein Programm, das nur durch den Schutzstopp unterbrochen wurde, wird fortgeführt.
- Ähnlich wie beim Schutzreset ist der Roboterarm beim deaktivierten Automatikmodus-Schutzreset nicht länger durch den Schutzstopp gesichert, wenn der Automatikmodus-Schutzstopp-Eingang HIGH ist. Ein Programm, das nur durch den Automatikmodus-Schutzstopp unterbrochen wurde, wird fortgeführt.

22.16.2. Ausgangssignale

Folgende Sicherheitsfunktionen können Sie für die Ausgangssignale nutzen. Alle Signale werden wieder LOW, wenn der Status, der das HIGH-Signal ausgelöst hat, beendet ist:

System-NotHalt

Das Signal ist *LOW*, wenn das Sicherheitssystem ausgelöst wurde und über den Eingang Roboter-Not-Aus oder mittels Not-Aus-Schalter in einen Not-Aus-Status gewechselt hat. Um Blockierungen zu vermeiden, wird kein LOW-Signal ausgegeben, wenn der Notaus-Status durch den Eingang System-Notaus ausgelöst wird.

Roboter bewegt sich

Das Signal ist LOW wenn sich der Roboter bewegt, andernfalls HIGH.

Roboter stoppt nicht

Das Signal ist *HIGH*, wenn der Roboter aufgrund einer Notabschaltung oder eines Schutzstopps angehalten wurde oder im Begriff ist, anzuhalten. Ansonsten Logikpegel LOW.

Reduzierter Modus

Das Signal ist *LOW*, wenn sich der Roboterarm im Reduzierten Modus befindet oder wenn der Sicherheitseingang mit einem Eingang in Reduziertem Modus konfiguriert wird und das Signal aktuell LOW ist. Andernfalls ist das Signal HIGH.

Nicht Reduzierter Modus

Dies ist das Gegenstück zum oben definierten Reduzierter Modus.

Sichere Home-Position

Das Signal ist *HIGH*, wenn der Roboterarm in der konfigurierten sicheren Home-Position angehalten wird. Andernfalls ist das Signal *LOW*.

HINWEIS

Externe Maschinen, die ihren Notaus-Status über den Ausgang System-Notaus vom Roboter erhalten, müssen mit der ISO 13850 konform sein. Dies ist insbesondere bei Installationen erforderlich, bei denen der Notaus-Eingang des Roboters mit einer externen Notaus-Vorrichtung verbunden ist. In solchen Fällen wird der Ausgang System-Notaus HIGH, wenn die externe Not-Aus-Vorrichtung auslöst. Dies bedeutet, dass der Status der Notabschaltung bei der externen Maschine ohne manuelles Eingreifen durch den Roboterbediener zurückgesetzt wird. Um die Sicherheitsnormen zu erfüllen, muss die externe Maschine für einen weiteren Betrieb manuell bedient werden.

22.16.3. OSSD-Sicherheitssignale

Sie können die Control-Box für die Ausgabe von OSSD-Pulsen konfigurieren, wenn ein Sicherheitsausgang inaktiv/HIGH ist. OSSD-Pulse erkennen die Fähigkeit der Control-Box für aktive (LOW) Sicherheitsausgänge. Werden OSSD-Pulse für einen Ausgang aktiviert, so wird jede 32 ms ein niedriger Impuls von 1ms auf dem Sicherheitsausgang erzeugt. Das Sicherheitssystem erkennt, wenn ein Ausgang mit einer Versorgung verbunden ist und fährt den Roboter herunter.

Die folgende Abbildung zeigt: Die Zeit zwischen den Impulsen auf einem Kanal (32 ms), die Impulslänge (1 ms) und die Dauer von einem Impuls auf einem Kanal zu einem Impuls auf dem anderen Kanal (18 ms)

OSSD-Aktivierung für Sicherheitsausgang

- 1. Tippen Sie in der Kopfzeile auf Installation und wählen Sie Sicherheit.
- 2. Wählen Sie unter Sicherheit den Eintrag E/A.
- 3. Im E/A Bildschirm unter Ausgangssignal wählen Sie das gewünschte OSSD-Kontrollkästchen. Sie müssen das Ausgangssignal zuweisen, um die OSSD-Kontrollkästchen zu aktivieren.

22.17. Hardware

Den Roboter können Sie auch ohne Anschluss des Teach Pendant einsetzen. Durch das Entfernen des Teach Pendant muss eine andere Quelle für die Notaus-Funktion definiert werden. Sie müssen angeben, ob das Teach Pendant angeschlossen ist, um zu verhindern, dass eine Sicherheitsüberschreitung ausgelöst wird.

22.17.1. Verfügbare Hardware auswählen

Der Roboter kann ohne PolyScope als Programmierschnittstelle eingesetzt werden.

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Tippen Sie im Menü links auf Sicherheit und wählen Sie Hardware.
- 3. Geben Sie das Sicherheitspasswort ein, um den Bildschirm zu entsperren.
- 4. Deaktivieren Sie das **Teach Pendant**, um den Roboter ohne Polyscope-Schnittstelle einzusetzen.
- 5. Tippen Sie auf die entsprechende Schaltfläche zum **Speichern und Neustarten**, damit Ihre Änderungen wirksam werden.

VORSICHT

Ist das Teach Pendant nicht angebracht bzw. vom Roboter getrennt, ist der Notaus-Schalter nicht mehr aktiv. Sie müssen das Teach Pendant aus dem näheren Umfeld des Roboters entfernen.

22.18. Sichere Ausgangsposition

Sichere Ausgangsposition ist eine Rückkehrposition, die mithilfe der benutzerdefinierten Ausgangsposition festlegt wird. Sichere Ausgangsposition-E/As sind aktiv, wenn der Roboterarm sich in der Sicheren Ausgangsposition befindet und eine Sichere Ausgangsposition-E/A festgelegt ist. Der Roboterarm befindet sich in der Sicheren Ausgangsposition, wenn die Gelenkpositionen sich an den angegebenen Gelenkwinkeln bzw. einem Vielfachen von 360 Grad davon befinden. Der Safe Home-Sicherheitsausgang ist aktiv, wenn der Roboter in der Safe Home-Position zum Stillstand kommt.

Ausführen Programm		Protokoll	PROGRAMM < Installation c	<unbenannt>* lefault_1*</unbenannt>	Neu Öffnen	Speichern	
> Allgemein	Roboter					Sichere Ho	me-Position
✓ Sicherheit						(Å Übe	un ohmen der Heme
Roboter-						Ç) Übe	menmen der Home
Gelenkgre							Löschen
Ebenen							
Werkzeugpo				_		Home-Posi	nen der sicheren ition wird die Verwendung
Werkzeugric						des Ausga Home-Posi	ng "Sichere ition" ebenfalls gelöscht.
E/A				1			
Hardware							
Zustimm- taster						Gelenkpos	ition (0-360°)
Sichere						Basis	90,00°
Home-Position	1					Schulter	270,00°
> Koordinatensys						Ellbogen	270,00°
	1					Handgelen	k1 270,00°
						Handgelen	k 2 90,00°
						Handgelen	k 3 0,00°
				1		_	
		Sicherheitspasswort		Entsperrer	Sperrer	<u>י</u>	Ubernehmen
Ausschalten		Geschwindigkeit 🥌		100%		\mathbf{O}	Simulation

22.18.1. Synchronisierung der Ausgangsposition

- 1. Tippen Sie in der Kopfzeile auf Installation.
- 2. Tippen Sie im Menü links auf Sicherheit und wählen Sie Sichere Home-Position.
- 3. Wählen Sie unter Sichere Home-Position den Eintrag Übernehmen der Home-Position.
- 4. Tippen Sie auf Übernehmen und im Dialogfenster das erscheint wählen Sie Übernehmen und neustarten.

22.19. Ausgang Sichere Ausgangsposition

Die sichere Home-Position muss vor dem dazugehörigen Ausgang definiert sein (siehe 22.16.2. Ausgangssignale auf Seite 134).

22.19.1. Festlegung des Sichere Ausgangsposition-Output

- 1. Tippen Sie in der Kopfzeile auf Installation.
- 2. Tippen Sie im Menü links auf Sicherheit und wählen Sie E/A.
- 3. Wählen Sie auf dem E/A-Bildschirm im Ausgangssignal unter Funktionszuweisung Safe Home.
- 4. Tippen Sie auf Übernehmen und im Dialogfenster das erscheint wählen Sie Übernehmen und neustarten.

22.20. Sichere Ausgangsposition bearbeiten

Das Bearbeiten von Sichere Ausgangsposition ändert nicht automatisch eine zuvor definierte Sichere Ausgangsposition. Während diese Werte nicht synchronisiert sind, ist der Ausgangsposition-Programmknoten nicht definiert.

22.20.1. Sichere Ausgangsposition bearbeiten

- 1. Tippen Sie in der Kopfzeile auf Installation.
- 2. Tippen Sie im Menü links auf **Basis-Befehle** und wählen Sie **Home**.
- 3. Tippen Sie auf **Position bearbeiten**, setzen Sie die neue Roboterarm-Position, und tippen Sie anschließend auf **OK**.
- 4. Tippen Sie im Menü links auf **Sicherheit** und wählen Sie **Sichere Home-Position**. Sie benötigen ein Sicherheitspasswort zum **Freischalten** der Sicherheitseinstellungen (siehe 22.2. Sicherheitspasswort festlegen auf Seite 120).
- 5. Wählen Sie unter Sichere Home-Position den Eintrag Übernehmen der Home-Position

23. Der Tab "Betrieb"

Der Tab **Ausführen** dient zur unkomplizierten Bedienung des Roboterarms und der Control-Box mit wenigen Schaltflächen und Optionen. Die einfache Bedienung kann mit einem Passwortschutz des Programmierteils von PolyScope kombiniert werden (siehe 30.3. Einstellungen auf Seite 263), um den Roboter zu einem Werkzeug für die Ausführung ausschließlich vorprogrammierter Programme zu machen.

In diesem Bildschirm können Sie ein Standardprogramm bei einem Flankenübergang eines externen Eingangssignals automatisch laden und starten lassen (siehe 25.7. Autostart auf Seite 217). Die Kombination von automatischem Laden und Starten eines Standardprogramms und der Auto-Initialisierung beim Einschalten kann verwendet werden, um den Roboterarm in andere Maschinen zu integrieren.

23.1. Programm

Das Feld **Programm** zeigt den Namen und den aktuellen Status des Programms an, das im Roboter geladen ist. Zum Laden eines anderen Programms können Sie auf den Tab **Programm laden** tippen.

23.2. Variablen

Ein Roboterprogramm kann Variablen nutzen, um während der Laufzeit verschiedene Werte zu aktualisieren. Es stehen zwei Arten von Variablen zur Verfügung:

Installationsvariablen

Diese können von mehreren Programmen verwendet werden und ihre Namen und Werte bleiben zusammen mit der Roboterinstallation bestehen (siehe 25.6. Installationsvariablen auf Seite 216).

Installationsvariablen behalten ihren Wert, auch nachdem Roboter und die Control-Box neu gestartet wurden.

Regelmäßige Programmvariablen

Diese stehen nur dem laufenden Programm zur Verfügung und ihre Werte gehen verloren, sobald das Programm gestoppt wird.

Wegpunkte anzeigen

Das Roboterprogramm verwendet Script-Variablen, um Informationen über Wegepunkte zu speichern.

Aktivieren Sie das Kontrollkästchen **Wegpunkte anzeigen** unter **Variablen**, um Script-Variablen in der Variablenliste anzuzeigen.

Variablentypen

Boole	Eine Boole'sche Variable, deren Wert entweder True oder False (wahr oder falsch) ist.
int	Eine Ganzzahl im Bereich von – 2147483648 bis 2147483647 (32 Bit).
Float	Eine Gleitkommazahl (dezimal) (32 Bit).
String	Eine Sequenz von Zeichen.
pose	Ein Vektor, der die Lage und Ausrichtung im Kartesischen Raum beschreibt. Er ist eine Kombination aus einem Positionsvektor (x , y , z) und einem Rotationsvektor (rx , ry , rz), der die Ausrichtung darstellt; Schreibweise ist p[x, y, z, rx, ry, rz].
liste	Eine Sequenz von Variablen.

23.3. Roboteralter

Dieses Feld gibt die Zeitdauer seit der ersten Inbetriebnahme an. Die Zahlenangaben in diesem Feld geben jedoch keine Rückschlüsse über die Ausführungsdauer des Programms

23.4. Roboter in Position fahren

Verwenden Sie den Bildschirm **Bewegen Sie den Roboter in Position**, wenn der Roboterarm vor Ausführung eines Programms in eine bestimmte Ausgangsposition fahren soll oder zum Anfahren eines Wegpunkts während einer Programmänderung.

Für den Fall, dass der Roboterarm im Bildschirm **Bewegen Sie den Roboter in Position** nicht in die Programmstartposition gefahren werden kann, geht er zum ersten Wegpunkt in der Programmstruktur.

Der Roboterarm kann aufgrund der folgenden Gegebenheiten in eine falsche Pose fahren:

- Die TCP-, Feature- oder Wegepunkt-Pose der ersten Bewegung wird während der Programmausführung verändert, bevor die erste Bewegung ausgeführt wird.
- Der erste Wegepunkt befindet sich in einem Programmstruktur-Knoten "If oder Switch".

23.4.1. Zugriff auf den Bildschirm Roboter in Position fahren

- 1. Tippen Sie in der Fußzeile auf Abspielen, um zum Bildschirm Bewegen Sie den Roboter in Position zu gelangen.
- 2. Folgen Sie den Anweisungen auf dem Bildschirm, um zwischen Animation und dem echten Roboter zu interagieren.

Ausführen Programm	Installation Bewegen	Protokoll	PROGRAMM ABCDE INSTALLATION default	Neu Öffn	er Speichern	сс сс
		Bewegen Sie	den Roboter ir	n Positi	on.	
	"Roboter hierher bew "Manuell" betätigen, u	regen" gedrückt halten, um die da ım den Roboter von Hand in sein	argestellte Bewegung aus e Position zu fahren.	szuführen. D	ie Taste loslassen, um abzub	rechen.
		🔥 Warnung: Ihre Nutzlast ist a	auf der Registerkarte Inst	tallation auf I	Null festgelegt	
			[Rob 3: A	oter bewegen zu: Manuell	
					<mark>8</mark> Abbrechen	
•						
Normal		Geschwindigkeit 🥌	100%	C		Simulation

23.4.2. Roboter fahren zu:

Halten Sie **Roboter bewegen zu:**, um den Roboterarm in eine Startposition zu bewegen. Die auf dem Bildschirm angezeigte Roboterarm-Animation zeigt die gewünschte, durchzuführende Bewegung.

HINWEIS

Kollisionen können den Roboter oder andere Geräte beschädigen. Vergleichen Sie die Animation mit der Position des echten Roboterarms und stellen Sie sicher, dass der Roboterarm die Bewegung sicher ausführen kann, ohne auf Hindernisse zu treffen.

23.4.3. Manuell

Tippen Sie auf **Manuell** um auf den **Bewegen**-Bildschirm zuzugreifen, in dem der Roboterarm unter Verwendung der Bewegungspfeile und/oder durch Konfiguration der Werkzeugposition- und Gelenkposition-Koordinaten bewegt werden kann.

24. Programm - Tab

Der Tab "Programm" zeigt das aktuell bearbeitete Programm an.

24.1. Programmstruktur

Durch Tippen auf **Befehl** fügen Sie Programmknoten zur Programmstruktur hinzu. Konfigurieren Sie die Funktionalität der hinzugefügten Programmknoten auf der rechten Seite des Bildschirms. Eine leere Programmstruktur ist nicht erlaubt. Programme mit falsch konfigurierten Programmknoten dürfen auch nicht ausgeführt werden. Ungültige Programmknoten werden gelb hervorgehoben, um anzuzeigen, was behoben werden sollte, bevor das Programm ausgeführt werden darf.

24.1.1. Programmausführungsanzeige

Ausführen Programm Installation B		PROGRAMM INSTALLATION	StartABCDE default Ne	eu Öffnen Speichern		
> Basis-Befehle		Q Befehl	Grafik	Variablen		
 Fortgeschritten Assistenten Suchen Kraft Palettierung Förderband 	1 ▼ Roboterprogramm 2 ♥ FahreAchse 3 ● Start 4 ● ● 5 ● ● 6 ● C 7 ● ● 8 ● E	Wegpu	nkt D Wegpuni Pose t	% Ikt festlegen bearbeiten	Feste Posi	tion 🔻
۲		► ● Stopp a	an dieser Stelle	🔘 Übergeord	Hierher bewe	wenden
			eifen mit Radius	O Gelenkgeso	chwindigkeit	60 °/s
			0 mm	Gelenkbes	chleunigung	80 °/s²
Aktiv	Geschwindinkeit		topbedingung	hinzufügen	Simu	2,0 S

Wenn das Programm läuft, wird der aktuell ausgeführte Programmknoten durch ein kleines Symbol neben dem Knoten angezeigt. Außerdem wird der Weg der Ausführung mit einer blauen Farbe hervorgehoben.

Drücken Sie auf das Symbol in der Ecke des Programms, um den Befehl zu verfolgen, der ausgeführt wird.

24.1.2. Schaltfläche Suchen

Tippen Sie auf \mathfrak{Q} , um eine Suche in der Programmstruktur durchzuführen. Drücken Sie das Symbol \times , um die Suche zu verlassen.

24.2. Programmstruktur Werkzeugleiste

Verwenden Sie die Werkzeugleiste unten in der Programmstruktur, um die Programmstruktur zu ändern.

24.2.1. Rückgängig/Erneut ausführen - Taste

Die Schaltflächen 🔊 und 🗢 dienen dazu, Änderungen rückgängig zu machen Befehle zu wiederholen.

24.2.2. Nach Oben & Unten bewegen

24.2.3. Ausschneiden

Die Schaltfläche x schneidet einen Knoten aus und ermöglicht dessen Nutzung für andere Aktionen (z. B. Einfügen an anderer Stelle der Programmstruktur).

24.2.4. Kopieren

Die Taste ermöglicht das Kopieren eines Knoten, sodass dieser für andere Aktionen (z. B. Einfügen an anderer Stelle der Programmstruktur) verwendet werden kann.

24.2.5. Einfügen

Mit der Schaltfläche 🖻 können Sie einen Knoten einfügen, der zuvor ausgeschnitten oder kopiert wurde.

24.2.6. Löschen

Tippen Sie auf die Schaltfläche in, um einen Knoten aus der Programmstruktur zu entfernen.

24.2.7. Kommentar

Tippen Sie auf die Schaltfläche 🚍, um spezifische Knoten in der Programmstruktur zu unterdrücken.

Unterdrückte Programmzeilen werden bei der Programmausführung übersprungen. Die Unterdrückung einer Zeile kann zu einem späteren Zeitpunkt wieder aufgehoben werden. Dies ist eine einfache Methode, um Änderungen an einem Programm vorzunehmen, ohne die ursprünglichen Inhalte zu zerstören.

24.3. Ausdruck-Editor

Rihren Programm Installation	ewegen b				P INS	ROGRAMM TALLATION	<unben default</unben 	annt>*	Г. Neu с	Öffnen Spei	chern			с с с с	
Basis-Befehle					۹	Befehl	Gr	afik	Variab	len					Ī
Fortgeschritten Schleife UnterProg	1 V R 2 e 1 3	oboterprogr FahreAchse O Wegpunkt	amm _1			Zuwe i Weist der	isung ^{ausgewa}	ihlten Var	iablen de	en Wert d	es Ausdri	Quelle ucks zu.	Ausdruc	k	
Zuweisung	4 - 5 - X	Einstellen Warten				Variable				A	usdruck				
If	6 🗖	Meldung					/ar_2		•	-=			f(x)		
Script	7 0	Halt													
Event	9 • •	Ordner													
2 * force() nput <input/>	•		True	e (HI)			False	e (LO)			Esc	+	– Entfern	en	
Dutput			ad		\r	Vor Dot			ot		7	8	•	_	1
<output></output>	•	a					0.				<i>'</i>	Ŭ	3		
Variable		<u> 1</u>	¥	í)	<	>	1	*]	4	5	6		1
<variable></variable>	•			Ľ	Ľ			,							
Pose <pose></pose>	•	-		τ	1	M	≥	,	+		1	2	3	У ок	
Function							-					•			
<funktion></funktion>	-	ABC						•	•			U			1

Während der Ausdruck selbst als Text bearbeitet wird, verfügt der Ausdruckseditor über eine Vielzahl von Schaltflächen und Funktionen zur Eingabe der speziellen Ausdruckssymbole, wie zum Beispiel * zur Multiplikation und ≤ für kleiner gleich. Die Tastatursymbol-Schaltfläche oben links im Bildschirm schaltet auf Textbearbeitung des Ausdrucks um. Alle definierten Variablen sind in der Variablen enthalten, während die Namen der Ein- und Ausgangsanschlüsse in den Auswahlfunktionen Eingang und Ausgang zu finden sind.

>Der Ausdruck wird auf grammatische Fehler überprüft, wenn Sie die Schaltfläche <code>OK</code> betätigen. Mit der Schaltfläche <code>Abbrechen</code> verlassen Sie den Bildschirm und verwerfen alle Änderungen.

Ein Ausdruck kann wie folgt aussehen:

digital_in[1] = True and analog_in[0]<0.5

24.4. Programm von ausgewähltem Knoten starten

Wenn sich der Roboter im Manuellen Modus befindet (siehe 21.1. Betriebsmodi auf Seite 115), dann ermöglicht die Option Starten von Auswahl einen Programmstart von einem ausgewählten Knoten aus. Bei Auswahl von Starten vom Anfang wird ein Programm normal ausgeführt. Die Option Starten von Auswahl ist nicht verfügbar, wenn ein Programm nicht von einem bestimmten Knoten ausgeführt werden kann. Abspielen ab Auswahl kann für Threads nicht ausgewählt werden, da ein Thread immer ab Start ausgeführt wird.

Basis-Befehle Roboterprogramm Wegpunkt ? PahreAchse Richtung ? PahreAchse Warten ? @ Einstellen @ Wegpunkt_1 Meldung Halt Gelenkgeschwindigkeit Kommentar Golden @ Ordner ? Basis Assistenten @ Gelenkwinkel verwenden Massistenten @ Gelenkwinkel verwenden Starten vom Anfang Roboterprogramm Starten von Auswahl	Ausführen Programm		PROGRAMM <unbenannt>* 📑 📑 🖬</unbenannt>
Bewegen FahreAchse Wegpunkt * * FahreAchse Richtung * * FahreAchse Warten * * Gelenkgeschwindigkeit Einstellen Gelenkgeschwindigkeit Meldung * * Fortgeschritten Y Fortgeschritten * * Gelenkwinkel verwenden Assistenten Gelenkwinkel verwenden Starten vom Anfang * * Starten von Auswahl	✔ Basis-Befehle	م	Befehl Grafik Variablen
Starten vom Anfang Roboterprogramm Starten von Auswahl	Bewegen Wegpunkt Richtung Warten Einstellen Meldung Halt Kommentar Ordner > Fortgeschritten > Assistenten	1 ▼ Roboterprogramm 2 ♥ ₱ FahreAchse 3 ↓ ♥ Wegpunkt_1	Bewegen FahreAchse Legen Sie fest, wie sich der Roboter zwischen den Wegpunkten bewegen soll. Die untenstehenden Werte gelten für alle nachgeordneten Wegpunkte und hängen von der gewählten Bewegungsart ab. TCP einstellen Gelenkgeschwindigkeit Aktiven TCP verwenden 60,0 °/s Koordinatensystem Gelenkbeschleunigung Basis 80,0 °/s ²
	O Normal		Starten vom Anfang Roboterprogramm Starten von Auswahl 2: FahreAchse

24.4.1. Verwendung der Option Abspielen ab Auswahl

Tippen Sie auf **Abspielen** und wählen Sie **Starten von Auswahl**, um ein Programm von einem Knoten innerhalb der Programmstruktur aus auszuführen.

	HINWEIS
E	 Der Abschnitt Vor Start wird, falls verwendet, stets f ür Starten von Auswahl und Starten vom Anfang ausgef ührt.
	 Beim Auftreten einer nicht zugewiesenen Variablen stoppt das Programm und gibt eine Fehlermeldung aus.
	 Ein Programm kann nur von einem Knoten im Roboterprogramm aus gestartet werden.
	 Starten von Auswahl kann innerhalb eines Unterprogramms verwendet werden. Die Programmausführung wird angehalten, wenn das Unterprogramm

24.5. Verwendung von Haltepunkten in einem Programm

endet.

Ein Haltepunkt unterbricht die Programmausführung. Haltepunkte können dazu verwendet werden, ein Programm an einem bestimmten Punkt zu unterbrechen bzw. fortzuführen, um Position oder Variable usw. des Roboters zu untersuchen. Siehe 21.1. Betriebsmodi auf Seite 115. 1. Der Haltepunkt wird durch Antippen einer Zeilennummer in der Programmstruktur gesetzt bzw. gelöscht.

Eine rote Linie oberhalb oder unterhalb eines Knotens zeigt an, wann ein Haltepunkt gesetzt ist und die Ausführung unterbrochen wird. Bei den meisten Knoten kommt es vor der Ausführung zu einer Unterbrechung mit den folgenden Ausnahmen:

- Wegpunkte: Ein Haltepunkt auf einem Wegpunkt-Knoten ignoriert das Blending und unterbricht das Programm, wenn der Roboter diesen Wegpunkt erreicht.
- Bis-Knoten: Ein Haltepunkt auf einem Bis-Knoten unterbricht das Programm, sobald die Bedingung erfüllt ist. Im Bis-Knoten verwendete Blendings werden nicht ignoriert. Sie werden dann unterbrochen, wenn der Roboter den Blend-Radius erreicht.

24.6. Einzelschritte in einem Programm

Die Einzelschritt-Taste ermöglicht die schrittweise Ausführung von Knoten, wenn sich der Roboter im manuellen Modus befindet. Sie können die Einzelschritt-Taste verwenden, wenn das Programm unterbrochen ist. Tippen Sie auf die Einzelschritt-Taste, um die Programmausführung fortzusetzen bzw. anzuhalten, wenn Sie den nachfolgenden Knoten im Programm erreichen. Unterstützt ein Knoten keine Haltepunkte, bewirkt das Antippen der Einzelschritt-Taste für die Programmausführung keine Unterbrechung auf diesem Knoten. Stattdessen wird die Ausführung fortgesetzt, bis das Programm einen Knoten erreicht, der Haltepunkte unterstützt.

24.7. Der Tab "Befehl"

Dieses Handbuch enthält nicht sämtliche Einzelheiten über jede Art von Programmknoten. Der Roboterprogrammknoten enthält drei Kontrollkästchen, die das Gesamtverhalten des Programms steuern.

Vor-Start-Sequenz hinzufügen

Wählen Sie dieses Kontrollkästchen aus, um einen speziellen Abschnitt zum Programm hinzufügen, der sich beim Starten des Programms aktiviert.

Erste Variablewerte einstellen

Wählen Sie diese Option aus, um die Anfangswerte der Programmvariablen festzulegen.

- 1. Wählen Sie eine Variable aus der Dropdown-Liste oder über die Variablen-Auswahlbox.
- 2. Geben Sie einen Ausdruck für die Variable ein. Dieser Ausdruck wird verwendet, um den Wert der Variablen beim Programmstart festzulegen.
- 3. Sie können Wert von vorheriger Ausführung behalten auswählen, um die Variable auf den Wert zu initialisieren, der aus dem Tab Variablen hervorgeht (siehe 24.9. Der "Variablen" Tab auf Seite 152).

So können Variable ihre Werte zwischen Programmausführungen beibehalten. Die Variable erhält ihren Wert von dem Ausdruck bei erstmaliger Ausführung des Programms oder wenn der Tab-Wert gelöscht wurde.

Eine Variable kann aus dem Programm gelöscht werden, indem ihr Namensfeld leer gelassen wird (nur Leerschritte).

Programmausführung in Endlosschleife

Wählen Sie diese Option, um das Programm kontinuierlich zu machen.

24.8. Grafik-Tab

Grafische Darstellung des aktuellen Roboterprogramms. Der Weg des TCP wird in einer 3D-Ansicht gezeigt, mit schwarzen Bewegungssegmenten und grünen Übergangssegmenten (Übergänge zwischen den Bewegungssegmenten). Die grünen Punkte bestimmen die Positionen des TCP an jedem der Wegepunkte im Programm. Die 3D-Zeichnung des Roboterarms zeigt die aktuelle Position des Roboterarms, während der *Schatten* verdeutlicht, wie der Roboterarm beabsichtigt, die auf der linken Bildschirmseite gewählten Wegpunkte zu erreichen.

Nähert sich die aktuelle Position des Roboter-TCP einer Sicherheits- oder Auslöseebene oder befindet sich die Ausrichtung des Roboterwerkzeugs nahe einer (siehe 22.11. Ebenen auf Seite 125), so wird eine 3D-Darstellung der Bewegungsgrenze angezeigt.

Beachten Sie, dass die Visualisierung der Begrenzungen deaktiviert wird, während der Roboter ein Programm ausführt.

Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Normal-Ebene steht, was angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf.

Auslöserebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil angezeigt, der auf die Seite der Ebene zeigt, auf der die Grenzen des Normal-Modus (siehe 22.8. Sicherheitsmodi auf Seite 124) aktiv sind.

Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor).

Wenn der Zielroboter-TCP sich nicht mehr in Nähe zum Limit befindet, verschwindet die 3D-Darstellung. Wird eine Bewegungsgrenze durch den TCP überschritten oder ist kurz vor der Überschreitung, wird die Darstellung der Bewegungsgrenze rot.

UNIVERSAL ROBOTS

Die 3D-Ansicht kann vergrößert und gedreht werden, um den Roboterarm besser sehen zu können. Die Schaltflächen oben rechts im Bildschirm können die verschiedenen grafischen Komponenten in der 3D-Ansicht deaktivieren. Die Schaltfläche unten schaltet die Visualisierung von Limits von Näherungsgrenzen ein/aus.

24.9. Der "Variablen" - Tab

Ausführen Programm Installation		PROGRAMM <unbenannt>*</unbenannt> INSTALLATION default*	Neu Öffnen Speichern	۰ د ۲ د
✓ Basis-Befehle		Q Befehl Grafik	Variablen	
Bewegen	1 Roboterprogramm	^		
Wegpunkt	2 • • FahreP	-		
Richtung	3 Wegpunkt_1			
Warton	4 O Variable			
warten	5 • V Kreisbewegung			
Einstellen	6 _ O Durchgangspun_1			
Meldung				
Halt	9 X Warten			
Kommentar	10 – 🖬 Meldung			
Ordnor	11 🕘 Halt	ь	Keine Variablen	
ordiner	12 – 🗩 Kommentar			
Fortgeschritten	13 •- • Ordner			
🔪 Assistenten	14 - <leer></leer>			
	15 V Schleife			
	10 -			
	18 var 2:=2 * force()			
	19 9 b <i>I</i> f			
	20 - <leer></leer>			
	21 – 🗗 Script			
	22 - 🛻 Switch	~		
	★ ♥ ⊄ ₩ Ш 🗓 🖮	Wegpunkte anzeigen		Löschen
Normal	Geschwindigkeit 🥌	100%		Simulation

Der Variablen-Tab zeigt die aktuellen Werte von Variablen im laufenden Programm und führt eine Liste von Variablen und Werten zwischen Programmverläufen auf. Er erscheint, wenn er anzuzeigende Informationen enthält. Wegpunkt-Variablen werden in der Liste angezeigt, wenn der Menüpunkt "Wegpunkte anzeigen" aktiviert ist.

152

24.10. Basisprogrammknoten

24.10.1. Bewegen

Basis-Befehle				Q		Befehl	Grafik	Variablen				
Fortgeschritten ⁷ Assistenten Suchen Kraft Palettierung	1 2 3 4 5 6	▼ F •	Roboterprogramm FahreAchse Wegpunkt_1 Einstellen Warten Meldung	^	-	Bewegen Legen Sie fest, v Die untensteher von der gewählt TCP einstellen	wie sich der Inden Werte Ien Bewegu	Roboter zwis gelten für alle ngsart ab.	schen den We e nachgeordn Geler	FahreAchse gpunkten beweger eten Wegpunkte ur nkgeschwindigkeit	n soll. nd hänger	n
Förderband	7 8 9 10 11 12 13 14 15 16 17		 Halt Kommentar Ordner <		E	Aktiven TCP ver Koordinatensyst Basis	wenden tem I verwender	• •	Geler	60,0 °, nkbeschleunigung 80,0 °,	/s /s²	
	18 19 20 21 22	• • •	Switch Timer_1 Entstapeln StartPos_1	×						Zurücksetzen		

Der **Bewegen**-Befehl steuert die Roboterbewegung durch die zugrunde liegenden Wegpunkte. Wegpunkte müssen unter einem Bewegen-Befehl vorhanden sein. Der Befehl "Move" definiert die Beschleunigung und die Geschwindigkeit, mit der sich der Roboterarm zwischen diesen Wegepunkten bewegen wird.

Bewegungsarten

Folgende drei Bewegungsarten stehen zur Auswahl: FahreAchse, FahreLinear und FahreP. Jede Bewegungsart wird weiter unten erklärt.

- FahreAchse führt Bewegungen aus, die im Gelenkraum des Roboterarms berechnet werden. Gelenke werden so gesteuert, dass deren Bewegung zeitgleich endet. Diese Bewegungsart sorgt für eine gekrümmte Bewegung des Werkzeugs. Die gemeinsamen Parameter, die für diese Bewegungsart gelten, sind die maximale Gelenkgeschwindigkeit und die Gelenkbeschleunigung und werden in *deg/s* bzw. *deg/s*² angegeben. Wird gewünscht, dass sich der Roboterarm (ungeachtet der Bewegung des Werkzeugs zwischen diesen Wegepunkten) zwischen Wegepunkten schneller bewegt, ist diese Bewegungsart zu bevorzugen.
- FahreLinear sorgt f
 ür eine lineare Bewegung des Werkzeugmittelpunkts (TCP) zwischen Wegpunkten. Dies bedeutet, dass jedes Gelenk eine komplexere Bewegung ausf
 ührt, um die lineare Bewegung des Werkzeugs sicherzustellen. Die gemeinsamen Parameter, die f
 ür diese Bewegungsart eingestellt werden k
 önnen, sind die gew
 ünschte Werkzeuggeschwindigkeit und die Werkzeugbeschleunigung, angegeben in mm/s bzw. mm/s², und auch eine Funktion.

UNIVERSAL ROBOTS

- FahreP bewegt das Werkzeug linear bei konstanter Geschwindigkeit und kreisrunden Blending-Bewegungen und ist für Abläufe wie beispielsweise Kleben oder Ausgeben konzipiert. Die Größe des Blending-Radius ist standardmäßig ein gemeinsamer Wert zwischen allen Wegepunkten. Ein kleinerer Wert sorgt für eine engere Kurve, ein größerer Wert für eine länger gezogene Kurve. Während sich der Roboterarm bei konstanter Geschwindigkeit durch die Wegepunkte bewegt, kann die Control-Box weder auf die Betätigung eines E/A, noch auf eine Eingabe durch den Bediener warten. Dadurch kann die Bewegung des Roboterarms eventuell angehalten oder ein Schutzstopp ausgelöst werden.
- Kreisbewegung kann zu einem FahreP hinzugefügt werden, um eine Kreisbewegung zu bewirken. Der Roboter beginnt die Bewegung von seiner aktuellen Position oder seinem Startpunkt aus, bewegt sich durch einen auf der Kreisbahn definierten Durchgangspunkt und einen Endpunkt, der die Kreisbewegung vollendet.

Ein Modus wird verwendet, um die Werkzeugausrichtung durch den Kreisbogen zu berechnen. Mögliche Moduseinstellungen:

- Fixe Orientierung: Werkzeugausrichtung wird nur durch den Startpunkt definiert
- Freie Orientierung: Der Startpunkt geht in den Endpunkt über, um die Werkzeugausrichtung festzulegen

Gemeinsame Parameter

Die Einstellungen der gemeinsamen Parameter unten rechts auf dem Bewegen-Bildschirm gelten für den Weg zwischen der vorherigen Position des Roboterarms und dem ersten Wegpunkt unter dem Befehl und von dort zu jedem weiteren der nachfolgenden Wegpunkte. Die Einstellungen des Bewegen-Befehls gelten nicht für den Weg *vom* letzten Wegpunkt unter diesem "Move" -Befehl.

TCP-Auswahl

Die Art und Weise, wie sich der Roboter zwischen den Wegepunkten bewegt, hängt davon ab, ob der TCP als benutzerdefinierter TCP oder aktiver TCP bestimmt wird. **Aktiven TCP ignorieren** ermöglicht das Anpassen der Bewegung in Bezug auf den Werkzeugflansch.

TCP bei einer Bewegung festlegen

- 1. Gehen Sie zum Programm-Tab, um den TCP für Wegepunkte festzulegen.
- 2. Wählen Sie den Bewegungstyp im Dropdown-Menü rechts unten.
- 3. Wählen Sie unter "Bewegen" eine Option im Dropdown-Menü TCP festlegen.
- 4. Wählen Sie Aktiven TCP verwenden oder wählen Sie einen benutzerdefinierten TCP. Ebenso kann Aktiven TCP ignorieren ausgewählt werden.

Auswahl von Funktionen

Die Funktion vergibt die abzubildenden Wegpunkte unter dem Befehl "Bewegen", wenn diese Wegpunkte festlegt werden (siehe Abschnitt 25.17. Koordinatensys auf Seite 227). Dies bedeutet, dass sich das Programm bei der Bestimmung eines Wegepunkts an die Werkzeugkoordinaten im Bezugs-Koordinatensystem erinnert. Es gibt nur einige wenige Umstände, die einer detaillierteren Erläuterung bedürfen:

Die ausgewählte Funktion hat keinen Einfluss auf die relativen Wegpunkte. Die relative Bewegung ist immer hinsichtlich der Orientierung zur **Basis** ausgerichtet.

Bewegt sich der Roboterarm zu einem variablen Wegpunkt, wird der Werkzeugmittelpunkt (TCP) als die Koordinaten der Variablen im Raum der ausgewählten Funktion berechnet. Deshalb ändert sich die Roboterarmbewegung für einen variablen Wegepunkt, sobald eine andere Funktion ausgewählt wird.

Sie können die Position einer Funktion ändern, während das Programm ausgeführt wird, indem Sie der entsprechenden Variablen eine Pose zuordnen.

12.1: Geschwindigkeitsprofil für eine Bewegung. Die Kurve wird in drei Segmente unterteilt: Beschleunigung (Acceleration), konstante Bewegung (Cruise) und Verlangsamung (Deceleration). Die Ebene der konstanten Bewegung wird durch die Geschwindigkeitseinstellung der Bewegung vorgegeben, während der Anstieg und Abfall der Phasen in Beschleunigung und Verlangsamung durch den Beschleunigungsparameter vorgegeben wird.

Gelenkwinkel verwenden

Als Alternative zur 3D-Pose, können Sie das Kontrollkästchen **Gelenkwinkel verwenden** auswählen, wenn Sie "FahreAchse" benutzen, um Wegpunkte mit den Gelenkwinkeln des Roboters zu bestimmen. **Ist Gelenkwinkel verwenden** aktiviert, sind TCP und Optionen für Funktionen nicht verfügbar. Definierte Wegpunkte, die **Gelenkwinkel verwenden** nutzen, werden nicht angepasst, wenn das Programm zwischen Robotern ausgetauscht wird.

24.10.2. Fixer Wegepunkt

Ein Punkt auf der Bahn des Roboters. Wegpunkte sind der wichtigste Faktor eines Roboterprogramms, da sie die Positionen des Roboterarms bestimmen. Ein Wegepunkt mit einer fixen Position wird angelernt, indem der Roboterarm physisch in die entsprechende Position bewegt wird.

Wegepunkte anlernen

Anlernen (Teaching) ist der Begriff dafür, wie dem Roboter vorgegeben wird, den TCP bezüglich eines Merkmals für eine Applikation zu positionieren. Um dem Roboter einen Wegepunkt anzulernen, gehen Sie wie folgt vor:

- 1. Fügen Sie einen **Bewegen-Knoten** im Programm-Tab ein.
- 2. Verwenden Sie das Dropdown-Menü **TCP einstellen** im "Bewegen"-Knoten, um den TCP einzustellen.
- 3. Verwenden Sie im "Bewegen"-Tab das Dropdown-Menü Funktion, um eine Funktion

auszuwählen.

4. Verwenden Sie den **Teach-Modus** oder **Jog**, um den Roboter in einer gewünschten Konfiguration zu positionieren.

Verwenden von Wegepunkten

Mit der Verwendung von Wegepunkten wird die angelernte Beziehung zwischen Funktion und TCP in der gegenwärtigen Situation angewandt. Die Beziehung zwischen der Funktion und der TCP, angewendet auf das aktuelle Bezugs-Koordinatensystem, resultiert in der gewünschten TCP-Position. Der Roboter ermittelt daraufhin, wie er sich positionieren muss, um diese TCP-Position mit dem derzeit aktiven TCP umzusetzen. Um einen Wegepunkt zu verwenden, gehen Sie wie folgt vor:

- Verwenden Sie einen vorhandenen Wegpunkt in einem "Bewegen" -Knoten oder fügen Sie den Wegpunkt in einem anderen "Bewegen-Knoten" ein (z. B. durch Kopieren und Einfügen oder Verwendung der "Link" -Taste auf dem Wegepunkt).
- 2. Legen Sie die gewünschten TCP fest.
- 3. Legen Sie die gewünschte Funktion fest.

Festlegung des Wegpunktes

Namen der Wegepunkte

Wegepunkte erhalten automatisch einen eindeutigen Namen. Der Name kann durch den Benutzer geändert werden. Wenn Sei ein Link-Symbol auswählen, werden Wegepunkte verknüpft und Positionsinformationen geteilt. Andere Wegepunktinformationen wie Blending-Radius, Werkzeug-/Gelenkgeschwindigkeit und Werkzeug-/Gelenkbeschleunigung werden für jeden einzelnen Wegepunkt konfiguriert, auch wenn sie verknüpft sein könnten.

Blending

Blending ermöglicht dem Roboter einen sanften Übergang zwischen zwei Bewegungsabläufen ohne am dazwischenliegenden Wegpunkt anzuhalten.

Beispiel

Betrachten wir beispielsweise eine Pick-and-Place-Anwendung (siehe Abbildung 12.2), bei der sich der Roboter aktuell am Wegpunkt 1 (WP_1) befindet und ein Objekt am Wegpunkt 3 greifen (WP_3) soll. Um Kollisionen mit dem Objekt und anderen Hindernissen (O) zu vermeiden, muss sich der Roboter (WP_3) aus der Richtung von Wegpunkt 2 kommend (WP_2) nähern.

Es werden also drei Wegpunkte für die Bahn einbezogen, um die Anforderungen zu erfüllen.

12.2: (WP_1) : Ausgangsstellung, (WP_2) : Zwischenziel, (WP_3) : Aufnahmeposition, (0) : Hindernis.

Ohne die Konfiguration weiterer Einstellungen führt der Roboter an jedem Wegpunkt einen Stopp aus, bevor er seinen Bewegungsablauf fortsetzt. Für diese Aufgabenstellung ist ein Stopp bei (WP_2) nicht erwünscht, da mit einer reibungslosen Bewegung Zeit und Energie eingespart und die Anforderungen dennoch erfüllt werden. Es ist sogar zulässig, dass der Roboter (WP_2) nicht genau erreicht, solange der Übergang von Bewegungsablauf eins zu zwei nahe dieser Position stattfindet.

Der Stopp bei (WP_2) kann durch Konfigurieren eines Blending für den Wegpunkt vermieden werden und ermöglicht dem Roboter die Berechnung für einen reibungslosen Übergang zur nächsten Bewegung. Der primäre Parameter für das Blending ist ein Radius. Wenn sich der Roboter innerhalb des Blending-Radius des Wegpunktes befindet, kann er von der ursprünglichen Bahn abweichen. Dies ermöglicht schnellere und gleichmäßigere Bewegungen, da der Roboter weder abbremsen noch beschleunigen muss.

Blending-Parameter

Neben den Wegpunkten beeinflussen mehrere Parameter den Bewegungsablauf im Blending-Bereich (siehe Abbildung 12.3):

- der Blend-Radius (r)
- die Anfangs- und Endgeschwindigkeit des Roboters (an Position ${\tt p1}$ und ${\tt p2}$)
- die Bewegungsdauer (z. B. wenn eine bestimmte Dauer für einen Bewegungsablauf vorgegeben wird, beeinflusst dies die Anfangs-/Endgeschwindigkeit des Roboters)
- die Bewegungsart im Blending von bzw. zu (MoveL, MoveJ)

12.3: Blending über (WP_2) mit Radius r, ursprüngl. Blending-Position bei p1 und letzte Blending-Position bei p2. (0) ist ein Hindernis.

Wird ein Blending-Radius eingestellt, so wird der Roboterarm um den Wegpunkt geführt, so dass der Roboterarm an dem Punkt nicht anhalten muss.

Blending-Bereiche können nicht überlappen, womit ausgeschlossen wird, dass ein eingestellter Blending-Radius mit einem Blending-Radius für einen vorhergehenden oder nachfolgenden Wegpunkt überlappt (siehe Abb. 12.4).

12.4: Blending-Radius-Überlappung nicht zulässig (*).

Bedingte Bewegungsabläufe im Blending-Bereich

Bewegungsabläufe im Blending-Bereich sind sowohl vom Wegpunkt, in dem der Blending-Radius festgelegt ist, als auch dem in der Programmstruktur nachfolgenden Wegpunkt abhängig. Das heißt im Programm in Abbildung 12.5 wird der Blending-Radius (WP_1) von (WP_2) beeinflusst. Die Folge davon wird offensichtlicher, wenn das Blending wie in diesem Beispiel um (WP_2) stattfindet.

Es gibt zwei mögliche Endpositionen. Um den nächsten Wegpunkt für das Blending zu bestimmen, muss der Roboter den aktuellen Wert von digital_input[1] bereits beim Eintritt in den Blending-Radius berechnen.

24. Programm - Tab

UNIVERSAL ROBOTS

Dies bedeutet, dass der Ausdruck **if...then** oder andere notwendige Anweisungen, die den folgenden Wegpunkt bestimmen (z. B. variable Wegpunkte) bereits ausgewertet werden, bevor wir bei (WP_2) tatsächlich ankommen. Bei Betrachtung des Programmablaufs klingt dies ein wenig unlogisch. Wenn es sich bei einem Wegpunkt um einen Wegpunkt ohne Blendingradius handelt auf welchen beispielsweise einem If-else-Befehl folgt durch welchen (z. B. mit einem E/A-Befehl) der nächste Wegpunkt bestimmt wird, so wird die Prüfung ausgeführt, sobald der Roboterarm am Wegpunkt anhält.

MoveL
WP_I
WP_1 (blend)
WP_2 (blend)
if (digital_input[1]) then
WP_F_1
else
WP_F_2
Q WP_I
X
WP_2

WPF1

12.5: WP_I ist der Ausgangswegpunkt und es gibt zwei mögliche endgültige Wegpunkte, WP_F_1 und WP_F_2, je nach bedingtem Ausdruck (if ... then). Die Bedingung if wird ausgewertet, sobald der Roboterarm den zweiten Übergang (*) erreicht.

WP F 2

Blending-Bereiche

12.6: Gelenkraum (MoveJ) im Vgl. zum kartesischen Raum (MoveL) Bewegung und Blending.

In Abhängigkeit von der Bewegungsart (d. h. MoveL, MoveJ oder MOVEP) werden unterschiedliche Blending-Bereiche erzeugt.

- Blendings in FahreP Bei Blendings in FahreP folgt die Position des Blending einem Kreisbogen mit konstanter Geschwindigkeit. Die Ausrichtung folgt einem Blending mit sanfter Interpolation zwischen den beiden Bahnen. Das Blending von MoveJ oder MoveL in ein MOVEP ist möglich. In einem solchen Fall verwendet der Roboter das Kreisbogen-Blending aus MoveP und interpoliert die Geschwindigkeit der beiden Bewegungen. Das Blending von MoveP zu MoveJ oder MoveL ist hingegen nicht möglich. Stattdessen gilt der letzte Wegpunkt des MoveP als Stopp-Punkt ohne Blending. Ein Blending ist nicht möglich, wenn die zwei Bahnen in einem Winkel nahe 180 Grad (Umkehrrichtung) stehen, da dies einen Kreisbogen mit einem sehr kleinen Radius darstellt, dem der Roboter nicht mit konstanter Geschwindigkeit folgen kann. Dies führt zu einer Laufzeitausnahme im Programm, die korrigiert werden kann, indem eine Anpassung der Wegpunkte in einem weniger spitzen Winkel vorgenommen wird.
- Blending mit FahreAchse FahreAchse-Blending verursacht eine gleichmäßige Kurve im Gelenkraum. Dies gilt für Blending aus MoveJ zu MoveJ, MoveJ zu MoveL und MoveL zu MoveJ. Das Blending produziert eine glattere und schnellere Flugbahn als die Bewegungen ohne

Blending (siehe Abbildung 15.6). Werden Geschwindigkeit und Beschleunigung für das Geschwindigkeitsprofil verwendet, bleibt das Blending innerhalb der Ausführung im Blending-Radius. Wird *Zeit* statt *Geschwindigkeit* und *Beschleunigung* zur Bestimmung des Geschwindigkeitsprofils beider Bewegungen verwendet, folgt der Bewegungsablauf dem Ablauf des ursprünglichen "FahreAchse". Wenn beide Bewegungen zeitlich eingeschränkt sind, spart der Einsatz von Blendings keine Zeit.

• Blendings in FahreLinear Bei Blendings in FahreLinear folgt die Position des Blending einem Kreisbogen mit konstanter Geschwindigkeit. Die Ausrichtung folgt einem Blending mit sanfter Interpolation zwischen den beiden Bahnen. Der Roboter kann seine Bahnbewegung verlangsamen, bevor er dem Kreisbogen folgt, um sehr hohe Beschleunigungen zu vermeiden (z. B. wenn der Winkel zwischen den beiden Bahnen in der Nähe von 180 Grad liegt).

24.10.3. Relativer Wegepunkt

Basis-Befehle			Q	Befehl	Grafik	Variable	en		
Fortgeschritten	1	Boboterprogramm							
Assistenten	2	• + EabreP	-	Wegpu	nkt			Relative	Position
C 1	3	- O Weapunkt 1				undet 1	Q.		
Suchen	4				Vegp	unkt_t	Or		
Kraft	5	Ourchgangspun 1		Relative Be	wegung, definie	rt durch den '	Vektor zwischen		Distanz
Palettierung	6	Endpunkt 1		Startpunkt	und Endpunkt				
	7	- Einstellen		Startpunk	t		Endpunkt	0.	0 mm
Förderband	8	🛛 🛛 Warten		Punkt	festlegen		Punkt festlegen		
	9	- 🖬 Meldung							Winkel
	10	O Halt		Hierhe	r beweg		Hierber beweg	1 17	70 N °
	11	- 🗩 Kommentar		F)				<u> т</u>	5,0
	12	🕈 🖿 Ordner							
	13								
	14	4 ♥ 2 Schleife 5		🔘 Übergeordneten Blendradius v 🔘 Übergeordnete Parameter v					
	15			Verschleifen mit Radius		O Werkzeuggeschw	schwindiakeit 250 mm		
	16	- ⊾ Aufruf				Warkzaughacabla		1200	
	17	■ var_2:=2 * force()			23		werkzeugbeschie	unigung	1200
	18	প− 🛃 If					🔿 Zeit		2,0 s
	19	- <leer></leer>							
	20	– 🖪 Script							
	21	— 🛥 Switch							
	22	Timer 1	~	+ 5	Stopbedingur	ng hinzufü	gen		
			m 🔤						

Ein Wegpunkt, dessen Position in Relation zur vorhergehenden Position des Roboterarms angegeben wird, wie z. B. "zwei Zentimeter nach links". Die relative Position wird als Unterschied zwischen den beiden gegebenen Positionen festgelegt (links nach rechts).

Hinweis: Hinweis: Bitte beachten Sie, dass wiederholte relative Positionen den Roboterarm aus dessen Wirkungsbereich heraus bewegen können.

Der Abstand hier ist der kartesische Abstand zwischen dem TCP an beiden Positionen. Der Winkel gibt an, wie sehr die Ausrichtung des TCP sich zwischen beiden Positionen ändert. Genauer gesagt handelt es sich um die Länge des Rotationsvektors, welche die Ausrichtungsänderung angibt.

24.10.4. Variabler Wegepunkt

Ausführen Programm Installation	Image: Beak gene and the second se
✔ Basis-Befehle	Q Befehl Grafik Variablen
Bewegen	1 Vicency Control Cont
Wegpunkt	2 P 🕂 FahreP
Richtung	3 O Wegpunkt_1 Bewegen Sie den Roboter auf eine variable Position
Warton	4 O Variable Variable verwenden
warten	5 • Vreisbewegung
Einstellen	b Uurchgangspun_i
Meldung	7 - Clinical Action Control Co
Halt	
Kommentar	10 – II Meldung
Ordner	I 11 – O Hait
Oraner	12 Sommentar
Fortgeschritten	13 🍖 Ordner
📏 Assistenten	14 — <i>cler</i> > Ubergeordneten Blendrädius V Ubergeordnete Parameter verwenden
	15 v Schleifer Mit Radius O Werkzeuggeschwindigkeit 250 mm/s
	17 L Aufruf 17 L Aufruf 17 L Aufruf
	18 var 2:=2 * force() Zeit 2,0 s
	19 🕈 🕨 IF
	20 - <pre> </pre> <pre> </pre> <pre> 20 </pre>
	21 Script
	22 Switch + Stopbedingung hinzufügen
Normal	Geschwindigkeit 💳 100% 🕞 🏹 🖸 Simulation 🔵

Ein Wegpunkt, dessen Position durch eine Variable angegeben wird, in diesem Fall berechnete_Pos. Die Variable muss eine *Pose* sein, wie beispielsweise

var=p[0.5,0.0,0.0,3.14,0.0,0.0]. Die ersten drei sind *x*,*y*,*z* und die letzten drei beschreiben die Ausrichtung als *Rotationsvektor*, der durch den Vektor *rx*,*ry*,*rz* vorgegeben wird. Die Länge der Achse entspricht dem zu drehenden Winkel in Radianten, und der Vektor selbst gibt die Achse an, um die die Drehung erfolgt. Die Position wird immer in Bezug auf einen Bezugsrahmen oder ein Koordinatensystem angegeben, definiert durch die ausgewählte Funktion. Wird ein Blending-Radius auf einen festen Wegpunkt gelegt, wobei der vorangegangene und nachfolgende Wegpunkt variabel ist, oder wird ein Blending-Radius auf einen Variable Wegpunkt gelegt, so wird der Radius nicht auf Überschneidungen geprüft (siehe Blending-Parameter auf Seite 158). Überschneidet der Übergangsradius bei der Ausführung des Programms einen Punkt, so ignoriert der Roboter diesen und bewegt sich zum nächsten Punkt.

Beispielsweise, um den Roboter 20mm entlang der z-Achse des Werkzeugs zu bewegen:

```
var_1=p[0,0,0.02,0,0,0]
Movel
Waypoint_1 (variable position):
Use variable=var_1, Feature=Tool
```

24.10.5. Richtung

Der Programmknoten **Richtung** gibt eine Bewegung relativ zu den Funktionsachsen oder TCPs an. Der Roboter bewegt sich entlang des im Richtung-Programmknoten angegebenen Pfads, bis die Bewegung durch ein **Until** gestoppt wird.

Ausführen Programm		PROGRAMM <unbenannt>* ြ ြ ြ</unbenannt> ISTALLATION default Neu Öffnen Speichern	
✓ Basis-Befehle	Q	Befehl Grafik Variablen	
Bewegen	1 V Roboterprogramm		
Wegpunkt	2 🕈 🕂 FahreLinear	Richtung Der Roboter beweat sich mit einer linear-Beweaur	ng, relativ zum gewählten
Richtung	3 ♥ ▼ Richtung: Basis X+	Koordinatensystem	5, 5
Warten		Koordinatensystem	Richtung
Einstellen		Koordinatensystem verwenden	
Meldung		O Basis	O Richtungsvektor
Halt			[1.0,0.0,0.0]
Kommentar			
Ordner			
> Fortgeschritten			
> Assistenten		🔘 Übergeordnete Parameter verwenden	
		O Werkzeuggeschwindigkeit	250,0 mm/s
		Werkzeugbeschleunigung 12	200,0 mm/s²
	▲ ● う ぐ ※ ■ 直 面 三	+ Stopbedingung hinzufügen	
Normal	Geschwindigkeit	100% D C	Simulation

Hinzufügen einer Richtungsbewegung

- 1. Klicken Sie unter "Basis-Befehle" auf **Richtung**, um eine lineare Bewegung zur Programmstruktur hinzuzufügen.
- 2. Definieren Sie die lineare Bewegung im Feld Richtung unter Funktion.

Stoppen einer Richtungsbewegung

1. Klicken Sie im Feld "Richtung" auf die Schaltfläche **Stoppbedingung hinzufügen**, um Stoppkriterien zu definieren und zur Programmstruktur hinzuzufügen.

Sie können Richtungsvektor-Einstellungen für **Werkzeuggeschwindigkeit** und **Werkzeugbeschleunigung** hinzufügen, um die Vektorrichtung für die lineare Bewegung zu definieren. Dies ermöglicht eine erweiterte Verwendung für:

- Definieren einer linearen Bewegung relativ zu mehreren Funktionsachsen
- Berechnung der Richtung als mathematischer Ausdruck

Die Richtungsvektoren definieren einen benutzerdefinierten Code-Ausdruck, der in einen Einheitsvektor aufgelöst wird. Die Richtungsvektoren [100,0,0] und [1,0,0] haben beispielsweise die gleiche Wirkung auf den Roboter. Stellen Sie die gewünschte Verfahrgeschwindigkeit entlang der X-Achse mit dem Geschwindigkeitsregler ein. Die Zahlenwerte im Richtungsvektor sind nur in Bezug aufeinander relevant.

24.10.6. Stopbedingung

Der Programmknoten **Stoppbedingung** definiert ein Stoppkriterium für eine Bewegung. Der Roboter verfährt entlang eines Pfades und stoppt, wenn ein Kontakt erkannt wird. In der Programmstruktur können Sie Bis-Knoten unter Richtungsknoten und Wegepunktknoten hinzufügen. Für Bewegung

können Sie mehrere Stoppkriterien hinzufügen. Die Bewegung stoppt, wenn die erste **Stoppbedingung** erfüllt ist.

Ausführen Programm Installation		PROGRAMM ·	<unbenannt>* default</unbenannt>	Neu Öffnen	Speichern	сс сс
✔ Basis-Befehle	٩	Befehl	Grafik	Variablen		
Bewegen Wegpunkt Richtung Warten	1 ▼ Roboterprogramm 2 ♥ FahreLinear 3 ♥ ▼ Richtung: Basis X+ 4 ■ Stoppbedingung	Stopp Geben Sie Der Robo erfüllt ist	bedingung die Stoppbedingung an :er bewegt sich in die ausgewählte Richtung, Until (bis) die Stoppbedingun			
Einstellen Meldung			Ausdruc	ck	<i>f</i> ()	()
Halt Kommentar		•	Distan	z	9	9
Ordner Fortgeschritten Assistenten			Werkzeugko	ontakt		7
		Für da als 10	as Erkennen ein 0,0 mm/s emfo	nes Kontakts wir ohlen	d eine Werkzeuggeschw	indigkeit kleiner
			E/A-Inpu	ut		
	▲ ♥ ♡ ♂ X 目 首 面 三	+	Stopbedingur	ng hinzufügen	Aktion hi	inzufügen
Normal	Geschwindigkeit		100%			Simulation

Im Feld Stoppbedingung können Sie die folgenden Stoppkriterien definieren:

- **Distanz** Mit diesem Knoten kann eine Richtungsbewegung gestoppt werden, wenn der Roboter eine bestimmte Entfernung zurückgelegt hat. Die Geschwindigkeit wird verlangsamt, so dass der Roboter genau nach der Entfernung stoppt.
- Werkzeugkontakt (siehe 24.10.7. Bis-Werkzeugkontakt unten) Mit diesem Knoten kann eine Bewegung gestoppt werden, wenn das Roboterwerkzeug einen Kontakt feststellt.
- Ausdruck Mit diesem Knoten kann die Bewegung an einem benutzerdefinierten Programmausdruck gestoppt werden. Zum Angeben der Stoppbedingung können Sie E/As, Variablen oder Scriptfunktionen verwenden.
- E/A-Input Mit diesem Knoten kann eine signalgesteuerte Bewegung an einem E/A-Eingang gestoppt werden.

24.10.7. Bis-Werkzeugkontakt

Der Programmknoten **Stoppbedingung Werkzeug-Kontakt** kann die Bewegung des Roboters stoppen, wenn ein Kontakt mit dem Werkzeug hergestellt wurde. Man kann damit die Verlangsamung und das Zurückfahren des Werkzeugs definieren.

VORSICHT

Die voreingestellte Bewegungsgeschwindigkeit ist für eine Kontakterkennung zu hoch. Eine höhere Bewegungsgeschwindigkeit löst einen Schutzstopp aus, bevor die Werkzeugkontakt- Bedingung greift. Um das Auslösen eines Schutzstopps zu vermeiden, muss die Bewegungsgeschwindigkeit herabgesetzt werden. Zum Beispiel: 100 m/s.

Basis-Befehle	Q Befehl Grafik Variablen					
Bewegen Wegpunkt	1 V Roboterprogramm 2 HorseAchse Stopbedingung - Werkzeugkontakt					
Richtung Warten	 3 P Wegpunkt_1 4 Der Roboter bewegt sich bis er am Werkzeug eine Berührung registriert. Der R 4 Bis Kontakt: Rückbewegung 0,(Der Roboter bewegt sich bis er am Werkzeug eine Berührung registriert. Der Robot stoppt dann mit der festgelegten Bremsgeschwindigkeit.				
Einstellen Meldung	Für das Erkennen eines Kontakts wird eine Werkzeuggeschwindigkeit kleiner als 100,t mm/c anfchlen Wird eine Aktion hinzugefügt, wird diese ausgeführt, sobald die Stopbedingung erfüllt ist					
Halt Kommentar Ordner Fortgeschritten Assistenten	✓ Vom Kontaktpunkt weg bewegen → Distanz Rückzug vom Kontaktpunkt → Kontakt 0,00 mm → Robotersto	pp				
	 Übergeordnete Entschleunigung verwenden Benutzerdefinierte Entschleunigung verwenden 2000,0 °/s² 					
	K Kion hinzufügen					

HINWEIS

Der Bis-Werkzeugkontakt funktioniert ggf. nicht, wenn das montierte Werkzeug vibriert, z. B. kann ein Vakuum-Greifer mit integrierter Pumpe hochfrequente Vibrationen verursachen.

Sie können den Bis-Werkzeugkontakt-Knoten für Anwendungen wie Stapeln/Entstapeln verwenden, wobei der Bis-Werkzeugkontakt die Höhe der gestapelten Objekte bestimmt.

Zurückfahren zu-Kontakt

Mithilfe der Option **Einfahren bis Kontakt** kann der Roboter an den ursprünglichen Kontaktpunkt zurückgefahren werden. Es kann eine zusätzliche Rückwärtsbewegung eingestellt werden, um den Roboter sich weg vom (oder in Richtung) Kontakt bewegen zu lassen. Dies ist von Nutzen, wenn Sie einen Greifer haben, der Freiraum für seine Bewegungen benötigt, oder wenn eine Klemmwirkung gefragt ist.

Funktion

Durch Hinzufügen einer **Aktion** kann ein Programmknoten hinzugefügt werden, wenn eine bestimmte **Stoppbedingung** erfüllt ist. z. B. kann ein Bis-Werkzeugkontakt die Greifbewegung eines Greifwerkzeugs umsetzen. Wenn keine **Aktion** definiert ist, wird die Programmausführung bis zum nächsten Programmknoten in der Programmstruktur fortgesetzt.

24.10.8. Warten

Ausführen Programm Installation		PROGRAMM <unbenannt>* 📮 🚔 🔚 C C 💳</unbenannt>
✔ Basis-Befehle	۹	Befehl Grafik Variablen
Bewegen	1 V Roboterprogramm	Waxton
Wegpunkt	2 🕈 🕂 FahreAchse	Wärlen Sie unten aus, auf was der Roboter im Programm warten soll.
Richtung	3 Wegpunkt_1 4 Einstellen	
Warten	5 - X Warten	O Kein Warten
Einstellen		O Warten 0,01 Sekunder
Meldung		O Auf Digitaleingang warten <- Di.Eingang>
Halt		O Warten auf <an.eingang> ▼ > ▼ 4,0 mA</an.eingang>
Kommentar		Warten auf f(x)
Ordner		
> Fortgeschritten		
> Assistenten		
Normal	Geschwindigkeit	

Warten unterbricht das E/A-Signal oder den Ausdruck für eine bestimmte Zeit. Wird Kein Warten ausgewählt, erfolgt keine Maßnahme.

Wenn die Kommunikationsschnittstelle für Werkzeug (TCI) aktiviert wird, ist der Analogeingang am Werkzeug für die Auswahl/den Ausdruck von **Warten auf** nicht verfügbar.

24.10.9. Einstellen

Ausführen Programm Installation		PROGRAMM <unbenannt>* 🔓 📴 🗖 C C = INSTALLATION default Neu öffnen Speichern</unbenannt>
✔ Basis-Befehle	Q	၃ Befehl Grafik Variablen
Bewegen	1 V Roboterprogramm	Finstellen
Wegpunkt	2 • 🕂 FahreAchse	Wählen Sie die Aktion, die der Roboter an dieser Stelle im Programm ausführen soll. Sie
Richtung	4 – Einstellen	können auch Anderungen in der Roboter-Nutzlast angeben. _
Warten		O Keine Aktion
Einstellen		O Digitalausgang setzen <dig. ausgang=""> ▼ Low ▼</dig.>
Meldung		O Analogausgang setzen <an.output> ▼ 4,0 mA</an.output>
Halt		C Einstellen COutput> f(x)
Kommentar		C Einzelimpuls einstellen <dig. ausgang=""> ▼ 0,500 s</dig.>
Ordner		Variable>
Assistenten		
		Aktiven TCP als Schwerpunkt verwenden
	▲ ╄ ७ ♂ X ₫ 🖬 🖬	Test
O Normal	Geschwindigkeit 🥌	

Ist der aktive TCP für eine bestimmte Bewegung zum Zeitpunkt der Programmierung bekannt, können Sie stattdessen die Verwendung der TCP-Auswahl unter **Bewegen** links im Seitenmenü in Betracht ziehen (siehe 24.10.1. Bewegen auf Seite 153). Weitere Informationen zur Konfigurationen mehrerer benannter TCPs finden Sie hier 25.2. TCP-Konfiguration auf Seite 207.

24.10.10. Meldung

Ausführen Programm Installation Be		PROGRAMM <unbenar< b=""> INSTALLATION default</unbenar<>	nt>* 📴 🗁 🗖	сс —
✓ Basis-Befehle	(Q Befehl Graf	ïk Variablen	
Bewegen 1 Wegpunkt 2 Richtung 4 Warten 5 Einstellen 6 Meldung Halt Kommentar Ordner 4 > Fortgeschritten > Assistenten	 Roboterprogramm FahreAchse Wegpunkt_1 Einstellen Xwarten Meldung 	PopUp-Typ: Meldung PopUp-Typ: Meldung Meldung Fehler	eldung auf dem Bildschirm und v natfläche "Welter" betätigt.	Text vartet darauf, dass
1	N ➡ ⊅ ⊄ X @ @ @ @	🗖 🛛 Die Programmau	sführung bei diesem Pop-up sta	ppen
O Normal	Geschwindigkeit 🥌	100%		Simulation

Ein Pop-up ist eine Meldung, die auf dem Bildschirm angezeigt wird, wenn das Programm den Popup-Knoten in der Programmstruktur erreicht. Tippen Sie im Befehl-Tab auf das leere Feld und verwenden Sie die Bildschirmtastatur, um Textinhalt für die Popup-Meldung einzugeben. Nachrichten werden auf maximal 255 Zeichen beschränkt.

Sie können das Dropdown **Text** auswählen, wenn Sie es vorziehen, dass in Ihrer Popup-Nachricht anstelle von Text eine Variable angezeigt wird.

Sie können auch **Die Programmausführung bei diesem Pop-up stoppen** auswählen, damit das Programm stoppt, wenn das Popup angezeigt wird.

Wenn während der Programmausführung die Popup-Meldung erscheint, tippen Sie im Popup-Dialogfeld auf **OK**, um das Programm fortzusetzen.

24.10.11. Halt

Die Ausführung des Programms wird an dieser Stelle angehalten.

24.10.12. Kommentar

Ausführen Programm Installation	Image: Bewegen E/A Protocol	PROGRAMM < INSTALLATION d	unbenannt>* efault	Neu Öffnen Speichern	° ° ≡
✓ Basis-Befehle		Befehi	Grafik	Variablen	
Bewegen	1 V Roboterprogramm	Komme	ntor		
Wegpunkt	2 🕈 🕂 FahreAchse	Komme	entar		
Richtung	3 OWegpunkt_1				
Warten	5 X Warten	Bitte Komme	entar eingeben:		
Einstellen	6 - II Meldung				
Meldung	7 – 🖤 Halt 8 – • Kommentar				
Halt					
Kommentar					
Ordner		(F)			
> Fortgeschritten					
> Assistenten					
	全 長 つ ぐ 米 通 箇 面 🖬				
O Normal	Geschwindigkeit 🥌		100%		Simulation

Hier erhält der Programmierer die Möglichkeit, das Programm durch eine Textzeile zu ergänzen. Diese Textzeile hat auf die Ausführung des Programms keinerlei Auswirkung.

24.10.13. Ordner

Ausführen Programm Installation		M <unbenannt>* 📮 📑 🖬 C C C 🗮 N default Neu Offnen Speichern</unbenannt>
✔ Basis-Befehle	Q Befeh	l Grafik Variablen
Bewegen	1 Roboterprogramm	or
Wegpunkt	2 P 🕂 FahreAchse Ein Ordr	er kann zur Strukturierung von Programmen verwendet werden und mehrere
Richtung		anthaiten
Warten	5 Z Warten Bitte ber	nennen Sie den Ordner. Dieser Text wird im Programmbaum angezeigt.
Einstellen	6 – 🖬 Meldung	Ordner
Meldung	7 O Halt	
Halt	9 P D Ordner	
Kommentar	10 - <leer></leer>	
Ordner	4) (Þ	
> Fortgeschritten		
🔪 Assistenten		
	1	
	_	
	♠ ♥ ७ ৫ ¥ 🗉 🖻 🗰 🚍 🗋 Ordr	ier Programmbaum ausblenden
O Normal	Geschwindigkeit	

Ein **Ordner**wird zur Organisation und Kennzeichnung bestimmter Programmteile, zur Bereinigung der Programmstruktur und zur Vereinfachung des Lesens und Navigierens im Programm eingesetzt.

Ordner haben keine Auswirkungen auf das Programm und seine Ausführung.

24.10.14. Nutzlast festlegen

hier wird ein Screenshot eingefügt

Legen Sie die Tragfähigkeit des Roboterarms mit dem Befehl "Nutzlast einstellen" fest. Sie können die Tragfähigkeit anpassen, um zu verhindern, dass der Roboter einen Schutzstopp auslöst, falls das Gewicht am Werkzeug vom erwarteten Gewicht abweicht.

24.11. Erweiterte Programmknoten

24.11.1. Schleife

Die zugrunde liegenden Programmbefehle befinden sich in einer Schleife. In Abhängigkeit von der Auswahl werden die zugrunde liegenden Befehle entweder unbegrenzt, eine gewisse Anzahl oder solange wiederholt wie die vorgegebene Bedingung wahr ist. Bei der Wiederholung für eine bestimmte Anzahl wird eine fest zugeordnete Schleifenvariable (im vorherigen Screenshot $loop_1$ genannt) erstellt, die in Ausdrücken innerhalb der Schleife eingesetzt werden kann. Die Schleifenvariable zählt von 0 bis N-1.

Bei der Erstellung von Schleifen mit einem Ausdruck als Endbedingung bietet PolyScope eine Option zur kontinuierlichen Bewertung dieses Ausdrucks, sodass die Schleife jederzeit während der Ausführung (statt nach jedem Durchlauf) unterbrochen werden kann.

24.11.2. lf

If und If...Else Anweisungen ändern das Verhalten des Roboter aufgrund von Sensoreingängen oder Variablenwerten.

Ausführen Programm		PROGRAMM < Installation d	:unbenannt>* efault	Neu Öffnen Speichern	° ° ≡
> Basis-Befehle	Q	Befehl	Grafik	Variablen	
 Fortgeschritten Schleife UnterProg Zuweisung If Script Event Thread Switch Timer Schrauben Home Assistenten 	1 Roboterprogramm 2 FahreAchse 3 Wegpunkt_1 4 Einstellen 5 XWarten 6 Warten 6 Meldung 7 O Halt 8 Ordner 10 G Coller 11 Q Schler 12 G Coller 13 L Aufruf 14 S var 2 :=2 * force() 15 P F fr 16 S S S S S S S S S S S S S S S S S S S	If Einzelne ode einer Variabl If Beding	r mehrere Bef en ausgeführt ung kontinuier	ehle können z.B. bedingt an ei oder übersprungen werden. <u>f(x)</u> lich prüfen	nen Eingang oder an den Wert
Normal	A ↓ C C X I i i i I I II II II II II II II II II	Hinzufüg Hinzufüg	en Elself	Entfernen Elself	Simulation

Im Ausdruck-Editor können Sie die Bedingungen auswählen, die Ausdrücke mit einer If-Anweisung bilden. Wenn eine Bedingung mit True (wahr) bewertet wird, werden die Anweisungen in diesem If-Befehl ausgeführt. Eine If-Anweisung kann nur eine Else-Anweisung enthalten. Mit Add Elself und Remove Elself können Sie Elself-Ausdrücke hinzufügen oder entfernen. Wählen Sie Ausdruck ständig prüfen, um zu ermöglichen, dass If, Elself und Loop Anweisungen ausgewertet werden, während die enthaltenen Programmzeilen ausgeführt werden. Wird ein Ausdruck innerhalb einer If-Anweisung Mit False (falsch) bewertet, werden die Anweisungen Elself oder Else befolgt.

HINWEIS

Befinden sich in einem If-Ausdruck oder einem Loop-Ausdruck Wegpunkte, dann können Sie mit der Option Ausdruck ständig prüfen einen stopj() oder einen stopl() nach dem Ausdruck einfügen, um den Roboterarm sanft zu verzögern. Dies gilt sowohl für If- als auch für Loop-Befehle (siehe Abschnitt 24.11.1. Schleife auf der vorherigen Seite).

24.11.3. Unterprogramm

Ausführen Programm Installation	Image: Berregen Image: Ber	P INS	programm < stallation d	unbenannt>* efault	Neu Öffnen	Speichern	د د د د
> Basis-Befehle		ર	Befehl	Grafik	Variablen		
V Fortgeschritten Schleife UnterProg Zuweisung	1 V Roboterprogramm 2 - 3 L Unterprogramm_1 4 -		Unterpro Ein Unterpro verweisen oc Unterprogra	"Ogramm gramm kann e ier in diesem P mmdatei	1 intweder auf ein Programm entha	e Datei auf der Festplatt liten sein.	Umbenennen 9
If			<keine da<="" td=""><td>tei ausgewäl</td><td>hlt></td><td></td><td></td></keine>	tei ausgewäl	hlt>		
Script Event Thread Switch Timer Schrauben Home Assistenten		Þ	Unterpro	gramm speic	: hern Unt	Datei laden	
	▲ ╄ ゔ ぐ ₭ ऺ ট 亩		Unterpro	gramm anhan grammbaum v	d dieses Progra verbergen	mms aktualisieren	
Normal	Geschwindigkeit 🥌			100%			Simulation

Ein Unterprogramm kann Programmteile enthalten, die an mehreren Stellen erforderlich sind. Ein Unterprogramm kann eine separate Datei auf der Diskette oder auch versteckt sein, um sie gegen ungewollte Änderungen am Unterprogramm zu schützen.

Unterprogramm aufrufen

Ausführen Programm Installation		PROGRAMM < INSTALLATION d	:unbenannt>* efault	Neu Öffnen Speichern	сс сс
> Basis-Befehle	۹	Befehl	Grafik	Variablen	
 Fortgeschritten Schleife UnterProg Zuweisung If Script Event Thread Switch Timer Schrauben Home Assistenten 	1 • Roboterprogramm 2 • FahreAchse 3 • Ø Wegpunkt_1 4 • Einstellen 5 • Warten 6 • Meldung 7 • Hait 8 • Kormentar 9 • Ordner 10 • <leer> 11 • Schleiře 12 • <leer> 13 • Aufruf</leer></leer>	Befehi Unterpr Wählen Sie e Keine	Grafik rogramm	Variablen amm aus, welches an dieser Stelle aufgeruf	fen werden soll.
Normal	Geschwindigkeit		100%		imulation

Wenn Sie ein Unterprogramm aufrufen, werden die Programmzeilen im Unterprogramm ausgeführt, bevor zur nächsten Zeile übergegangen wird.

24.11.4. Zuweisung

Ausführen Programm Installation	Image: Programm < unbenannt>* Image: P
Exercision Exercision > Basis-Befehle > Fortgeschritten Schleife UnterProg Zuweisung If Script Event Throad	PROGRAMM <unber line<="" th=""> Image: Content line <thcontent line<="" th=""> Content line <</thcontent></unber>
Thread Switch Timer Schrauben Home > Assistenten	10 \leftarrow 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Normal	

Weist den Variablen Werte zu. Der Variablenwert kann das Ergebnis von Ausdrücken sein, die im Ausdruckseditor erstellt wurden (siehe Abschnitt 24.3. Ausdruck-Editor auf Seite 146).

Sie können auch einen variablen Wert von einem Operator anfordern. Wenn ein Wert von einem Operator angefordert wird, ist es möglich, eine Operator-Nachricht anzuzeigen, um die Eingabe gegen gängige Variablentypen zu validieren.

24.11.5. Script

Ausführen Programm Installation	Image: Programm < unbenannt>* Image: P
> Basis-Befehle	Q Befehl Grafik Variablen
✓ Fortgeschritten	1 V Roboterprogramm
Schleife	2 🕈 🕂 FahreAchse Script-Code Linie 🔻
UnterProg	3 Wegpunkt_1 Im Fenster unten können Sie Text eingeben, der als Script-Code vom URController
Zuweisung	5 - Z Warten
If	6 – 🖬 Meldung f(x)
Script	7 – 🕐 Halt 8 – • Kommentar
Event	9 🕈 🖿 Ordner
Thread	10 eer>
Switch	11 ♥ C Schleife
Timer	13 – L. Aufruf
Schrauben	14 - : var_2:=2 * force()
Home	16 - <leer></leer>
🔰 Assistenten	17 – 🗗 Script
	▲ ♣ ゔ ♂ 米 値 箇 面 🔤
Normal	Geschwindigkeit 🛑 100% 🕞 🕞 🕒 Simulation 🔵

Die folgenden Optionen sind in der Dropdownliste unter Befehl verfügbar:

- Zeile ermöglicht Ihnen das Schreiben einer einzelnen Zeile von URscript-Code mithilfe des Ausdruck-Editors (24.3. Ausdruck-Editor auf Seite 146)
- Datei ermöglicht Ihnen das Schreiben, Bearbeiten bzw. Laden von URscript-Dateien.

Sie können Anweisungen zum Schreiben von URscript im Script-Handbuch auf der Support-Website (http://www.universal-robots.com/support) finden.

Funktionen und Variablen in einer URscript-Datei sind für den Einsatz im Programm in PolyScope verfügbar.

24.11.6. Event

Ein Ereignis kann zur Überwachung eines Eingangssignals eingesetzt werden und eine Maßnahme durchführen oder eine Variable einstellen, wenn dieses Eingangssignal auf HIGH wechselt Wechselt beispielsweise ein Ausgangssignal auf HIGH, kann das Ereignisprogramm 200 ms warten, bevor es das Signal anschließend wieder auf LOW zurücksetzt. Dadurch kann der Hauptprogrammcode erheblich vereinfacht werden, falls eine externe Maschine durch eine ansteigende Flanke anstelle eines HIGH-Levels ausgelöst wird. Ein Event wird einmal pro Kontrollzyklus (2 ms).

24.11.7. Thread

Ein Thread ist ein paralleler Prozess zum Roboterprogramm. Ein Thread kann zur Steuerung einer externen Maschine, unabhängig vom Roboterarm, eingesetzt werden. Ein Thread kann mithilfe von Variablen und Ausgangssignalen mit dem Roboterprogramm kommunizieren.

24.11.8. Switch

Ausführen Programm Installation		PROGRAMM < INSTALLATION d	unbenannt>* efault	Neu Öffnen Speichern	° ° ∎
> Basis-Befehle	۹	Befehl	Grafik	Variablen	
 Fortgeschritten Schleife UnterProg Zuweisung If Script Event Thread Switch Schrauben Home Assistenten 	1 ▼ Roboterprogramm 2 ♥ FahreAchse 3 ● Wegpunkt_1 4 ● Einstellen 5 ■ Warten 6 ■ Meldung 7 ● Halt 8 ● Ordner 10 ● <leer> 11 ♥ Schleife 12 ● <leer> 13 ■ <leer> 14 ● var_2:=2 * force() 15 ▶ If 16 ● <leer> 17 ■ Script 18 ● Switch</leer></leer></leer></leer>	Switch Sie können S Programms Eiself-Anwe ausgewählte Switch Switch Standard + Ca - Ca	switch-Anweisu zu steuern. Dio isungen ersetz n Bedingungs- I-Case se se	ingen verwenden, um den Ablauf Ihres ese können komplexe I f ren und eine Reihe von Werten der Variablen prüfen. ((x) (keine Auswahl	
Normal	Geschwindigkeit		100%	\mathbf{D}	Simulation

IR

UNIVERSAL ROBOTS

Eine **Switch Case**-Konstruktion bewirkt eine Änderung des Roboterverhaltens basierend auf Sensoreingänge oder Variablenwerte. Verwenden Sie den **Ausdruckseditor**, um die Bedingung zu beschreiben, in welcher der Roboter mit den Unterbefehlen dieses Switch fortfahren soll. Wenn die Bedingung einen dieser Fälle erfüllt, werden die Zeilen in dem jeweiligen Case ausgeführt. Wurde ein "Default Case" festgelegt, werden die Linien nur dann ausgeführt, wenn keine anderen passenden Fälle wurden gefunden.

Jeder Switch kann mehrere Cases sowie einen Default Case haben. In einem Switch kann immer nur eine Instanz pro Case-Wert definiert sein. Cases können mithilfe der Schaltflächen auf dem Bildschirm hinzugefügt werden. Ein Case-Befehl kann für diesen Switch vom Bildschirm entfernt werden.

24.11.9. Timer

Ein Timer misst die benötigte Zeitdauer, die bestimmte Teile des Programms für die Ausführung benötigen. Eine Programmvariable enthält die Zeit, die seit dem Start eines Timers verstrichen ist, und ist auf der Registerkarte "Variablen" und der Registerkarte "Befehl" zu sehen.

24.11.10. Home

Ausführen Programm Installation	erespen RA Protocol	PROGRAMM INSTALLATION	<unbenannt>* default_1*</unbenannt>	Neu Öffnen	Speichern	6 6 0 5	≡
> Basis-Befehle	۵	Befehl	Grafik	Variablen			
✓ Fortgeschritten	1 Roboterprogramm	^ Home					
Schleife	2 - 🖶 Home	Zur in der l	nstallation defin	nierten Home-Po	osition bewegen		
UnterProg	3 🕈 🕂 FahreP						
Zuweisung	4 Wegpunkt_1	FahreAc	hse				
lf	6 ♥ ▼ Kreisbewegung	O Geler	nkgeschwindigk	ceit	60 °/s		
Script	7 Ourchgangspun_1	Geler	nkbeschleunigu	ng	80 °/s²		
Event	8 - O Endpunkt_1	O Zeit			2 s		
Event	9 Einstellen 10 8 Warten						
Ihread	11 - I Meldung	P				Hierher bewe	
Switch	12 🕘 Halt	⊠ Gelen	kwinkel verwend	den			
Timer	13 – 🗩 Kommentar	_					
Schrauben	14 V Ordner	Ausgabe de	er sicheren Hom	ne-Position in d	er Sicherheitsko	nfiguration zuweisen	
Home	16 e Schleife	Sichere H	ome-Position			Ausgänge	
🔪 Assistenten	17 - <leer></leer>	Nicht konfi	auriert			Nicht zugewiesen	
	18 L Aufruf		-			5	
	19 var_2:=2 * force()						
	21 - <leer></leer>						
		-					
Ausschalten	Geschwindigkeit		100%	0		Simulation	

Der Ausgangsposition-Knoten verwendet Gelenkwinkel zum Bewegen des Roboters an eine zuvor festgelegte Position. Wenn der Ausgangsposition-Knoten als "Sichere Ausgangsposition" definiert ist, wird er als Ausgangsposition (Sicherheit) in der Programmstruktur angezeigt. Wenn die Ausgangsposition nicht in "Sicherheit" definiert ist, ist der Knoten nicht definiert.

24.12. Assistenten

24.12.1. Palettierung

Palettierung stellt eine Vorlage dar, um auf einfache Weise Palettierungs- und Entpalettierungsaufgaben sowie Aufnehmen und Ablegen von Teilen (z.B. von Ablagen, Vorrichtungen usw.) zu programmieren und den Roboter wiederholbare Aktionen für verschiedene Elemente in mehreren Lagen und verschiedenen Mustern ausführen zu lassen. Es können verschiedene Muster erstellt und auf bestimmte Lagen angewandt werden. Auch eine Trennung zwischen den einzelnen Lagen ist möglich (siehe Hinzufügen einer Trennung zwischen Lagen innerhalb einer Palettierungssequenz auf Seite 183). Darüber hinaus können Sie Funktionen aus den Paletten-Eigenschaften verwenden, um die Platzierung Ihrer Palette mühelos anzupassen. Für weitere Informationen zu Funktionen siehe 25.17. Koordinatensys auf Seite 227. Beachten Sie die Anweisungen im Abschnitt **Ein Palettierungs-Programm erstellen**, um die Palettierungs-Vorlage zu nutzen.

Palettierungs-Programm erstellen

Ausführen Programm Installation		I	PROGRAMM <	:unbenannt>* lefault	Neu Öffnen Speichern	
> Basis-Befehle		Q	Befehl	Grafik	Variablen	
 Fortgeschritten Assistenten Suchen Kraft Palettierung Förderband 	1 V Roboterprogramm 2 • # Pallet 1 3 • V Aktion vor Palettierung 4 • eleer > 5 • Muster 6 • eleer > 7 • Lagen 8 • Eleijeder Position 9 • eleer >		Palettie Die Palettier Depalettiera Aufgaben ar werden.	erung vorlage ermögli ufgaben zu pro n verschiedenei rung tieren	icht dem Anwender auf ein grammieren. So können z n Positionen und in versch	fache Weise Palletier- und um Beispiel Pick und Place ledenen Ebenen ausgeführt
(4	10 ♥ ▼ Aktion nach Palettierung 11		Paletteneiç	genschaften		
			Bezeichnung Koordinaten Objekthöhe Positionszäh	g system Iler	Pallet_1	
	全まちぐと言言言		Aktionen Aktion vi Aktion vi Aktion n	osition merken or Palettierung ach Palettierun	hinzufügen g hinzufügen	
Normal	Geschwindigkeit	_		100%		Simulation

- 1. Entscheiden Sie, ob Sie eine Funktion anlernen (siehe 25.17. Koordinatensys auf Seite 227) oder eine Basis als Bezugsebene verwenden wollen.
- 2. Tippen Sie im Tab Programm unter Assistenten auf Palettierung.
- 3. Wählen Sie im Bildschirm Palettierung in Abhängigkeit von der gewünschten Aktion eine der folgenden Aktionen aus.
 - 1. Wählen Sie **Palettierung**, um Elemente auf einer Palette zu organisieren.
 - 2. Wählen Sie Depalettieren, um Elemente von einer Palette zu entfernen.
- Geben Sie unter Paletteneigenschaften den Namen des Programms, das Koordinatensystem (siehe Schritt 1), die Objekthöhe und den Namen des Elementzählers für Ihr Programm an. Aktivieren Sie das Kontrollkästchen Letzte Position merken, wenn der Roboter nach einem Neustart mit dem Element fortfahren soll, bei dem er gestoppt wurde.
- 5. Fügen Sie im Bildschirm Palettierung unter **Aktionen** eine der folgenden Aktionen hinzu, die vor oder nach der Palettierungssequenz ausgeführt werden sollen:
 - 1. Aktion vor Palettierung hinzufügen: Diese Aktionen werden vor dem Start der Palettierung ausgeführt.
 - 2. Aktion nach Palettierung hinzufügen: Diese Aktionen werden nach Abschluss der Palettierung ausgeführt.

UNIVERSAL ROBOTS

7. Tippen Sie in der Programmstruktur auf den/die Musterknoten, um dem Roboter lagenspezifische Positionen (z. B. Start- und Endpunkte, Gitterecken und/oder Anzahl der Elemente) anzulernen. Siehe 24.10.1. Bewegen auf Seite 153 für Lehranweisungen. Alle Positionen müssen an der Unterseite der Palette angelernt werden. Tippen Sie zum Duplizieren eines Musters im Musterknoten-Bildschirm, den Sie duplizieren wollen, auf die Schaltfläche Muster duplizieren.

	Linie Wählen Sie zum Anlernen der Positionen jedes Element in der Programmstruktur aus:
	Start_Item_1
	• End_Item_1
	Fügen Sie die Anzahl der Elemente mit dem Textfeld Elemente unten am Bildschirm in Ihre Sequenz ein.
	Gitter Wählen Sie zum Anlernen der Positionen jedes Element in der Programmstruktur aus:
	Corner_Item_1
	Corner_Item_2
	Corner_Item_3
	Corner_Item_4
	Fügen Sie zum Festlegen der Abmessungen des Musters die Anzahl der Zeilen und Spalten in die entsprechenden Textfelder ein.
	Unregelmäßig Wählen Sie zum Anlernen der Positionen jedes Element in der Programmstruktur aus:
	• Element_1
	• Element_2
	• Element_3
	Tippen Sie auf Element hinzufügen , um ein neues Element in der Sequenz hinzuzufügen und festzulegen.

- 8. Klicken Sie in der Programmstruktur auf den Knoten Lagen, um die Schichten in Ihrer Palettierungssequenz zu konfigurieren. Wählen Sie aus dem Dropdown-Menü Muster wählen ein Muster für jede Schicht aus. Klicken Sie auf die Schaltfläche Lage hinzufügen, um Ihrem Programm weitere Schichten hinzuzufügen. Lagen müssen in der richtigen Reihenfolge hinzugefügt werden, da sie später nicht mehr neu geordnet werden können.
- 9. Tippen Sie in der Programmstruktur auf den Knoten **An jedem Element**. Wählen Sie die An jedem Element-Standardoption (A) Assistent oder (B) Manuelle Konfiguration Nachstehend finden Sie die Anleitung für jede Option.

(A) Assistent An jedem Element

Der Assistent An jedem Element hilft bei der Definition der Aktionen, die für jedes Element auf einer Palette ausgeführt werden sollen, z.B. Referenzpunkt, Annäherungs-Wegepunkt, Werkzeugaktionspunkt-Wegepunkt und Exit-Wegepunkt (Beschreibung in folgender Tabelle). Die Annäherungs- und Exit-Wegepunkte für jedes Element bleiben in der gleichen Richtung und Ausrichtung bestehen, unabhängig von der Ausrichtung der verschiedenen Gegenstände.

- 1. Tippen Sie in der Programmstruktur auf den Knoten An jedem Element.
- 2. Klicken Sie im folgenden Fenster auf Weiter.
- Tippen Sie auf Hierher bewegen. Halten Sie dann die Schaltfläche Auto gedrückt oder fahren Sie den Roboter mit der Schaltfläche Manuell zum Referenzpunkt. Tippen Sie auf Weiter. Tippen Sie erneut auf Weiter.
- 4. Tippen Sie auf **Wegpunkt setzen**, um den Annäherungs-Wegpunkt anzulernen (siehe 24.10.1. Bewegen auf Seite 153). Tippen Sie auf **Weiter**.
- 5. Wiederholen Sie Schritt 3.
- 6. Tippen Sie auf **Wegpunkt setzen**, um den Ausgangs-Wegpunkt anzulernen (siehe 24.10.1. Bewegen auf Seite 153). Tippen Sie auf **Weiter**.
- 7. Tippen Sie auf Fertigstellen.
- 8. Jetzt können Sie im Ordner Werkzeugaktionen in der Programmstruktur geeignete Aktionsknoten für Greifer hinzufügen.

Greif-/Ablageposition Werkzeugaktionspunkt-Wegpunkt: Die Lage und Position, an der sich der Roboter befinden soll, wenn für jedes Element in einer Lage eine Aktion ausgeführt wird. Der Werkzeugaktionspunkt-Wegepunkt ist standardmäßig der Referenzpunkt, kann aber durch Tippen auf den Knoten Werkzeugaktionspunkt-Wegepunkt in der Programmstruktur bearbeitet werden. Wenn der Assistent die Konfiguration übernimmt, ist der Referenzpunkt die erste Position in der ersten definierten Lage auf der Palette. Der Referenzpunkt wird verwendet, um dem Roboter den Annäherungs-Wegepunkt, den Werkzeugaktionspunkt-Wegepunkt und den Ausgangs-Wegepunkt für jedes Element in einer Lage zu vermitteln.

Annäherungs-Wegpunkt: Die kollisionsfreie Position und Richtung, in die der Roboter bei der Annäherung an ein Element in einer Lage verfahren soll.

AnfahrPunkt

Werkzeugaktion: Die Aktion, die das Roboterwerkzeug für jedes Element ausführen soll.

Werkzeugaktion

Ausgangs-Wegpunkt: Die Position und Richtung, in die der Roboter beim Entfernen von einem Element in einer Lage verfahren soll.

Abbrechen

(B) Manuelle Konfiguration

- 1. Tippen Sie in der Programmstruktur auf den Knoten An jedem Element.
- 2. Klicken Sie im Startbildschirm An jedem Element auf Manuelle Konfiguration.
- 3. Wählen Sie aus dem Dropdown-Menü ein Muster und ein Referenzpunkt-Element aus. Klicken Sie auf **Als Referenzpunkt verwenden**, um den Referenzpunkt zu setzen.
- 4. Tippen Sie auf Hierher bewegen, um den Roboter zum Referenzpunkt zu fahren.
- 5. Klicken Sie in der Programmstruktur auf den Annäherungs-Knoten, um dem Roboter den Annäherungs-Wegpunkt anzulernen (siehe 24.10.1. Bewegen auf Seite 153). Der Annäherungs-Wegepunkt bleibt in der gleichen Richtung und Ausrichtung bestehen, unabhängig von der Ausrichtung der verschiedenen Gegenstände.
- Tippen Sie in der Programmstruktur auf den Knoten An jedem Element. Wiederholen Sie Schritt
 4.
- 7. Klicken Sie in der Programmstruktur auf den Knoten **Ausgang**, um dem Roboter den Ausgangs-Wegpunkt anzulernen (siehe 24.10.1. Bewegen auf Seite 153).
- 8. Jetzt können Sie im Ordner Werkzeugaktionen in der Programmstruktur geeignete Aktionsknoten für Greifer hinzufügen.

Hinzufügen einer Trennung zwischen Lagen innerhalb einer Palettierungssequenz

Trenner wie Papier oder Styropor können zwischen den Lagen innerhalb einer Palettierungssequenz angeordnet werden. Um Lagen voneinander zu trennen, gehen Sie wie folgt vor:

- 1. Tippen Sie in der Programmstruktur auf den Knoten Muster.
- 2. Wählen Sie im Bildschirm **Muster Zwischenlage** aus und definieren die Höhe im Textfeld **Höhe Zwischenlage**. Wenn keine Höhe definiert ist, wird das Programm nicht ausgeführt.
- 3. Wählen Sie in der Programmstruktur **Lagen** aus. Wählen Sie im Lagen-Bildschirm aus, zwischen welchen Lagen die Trenner liegen sollen (Trenner werden automatisch zwischen den einzelnen Lagen platziert).
- 4. Tippen Sie in der Programmstruktur auf den Knoten **Zwischenlage**. Klicken Sie auf **Trenner** (**Zwischenlage**) setzen, um die Position des Trenners zu vermitteln.
- 5. Wählen Sie zwischen der Standardoption (A) Trenner-Assistent oder (B) Manuelle Konfiguration der Trennersequenz. Nachstehend finden Sie die Anleitung für jede Option.

Wenn der Assistent abgeschlossen ist oder Sie den Assistenten abbrechen, wird in der Programmstruktur unter **Zwischenlage-Aktion** eine Vorlage angezeigt. Zusätzlich zum Ordner Werkzeugaktion unter dem Knoten Trenner-Aktion, können Sie einen der folgenden Ordner auswählen:

- Separator abholen legt die Stelle fest, an der der Roboter die Zwischenlagen für die Palettierung aufnimmt.
- Zwischenlage ablegen ist die Stelle, an der die Zwischenlagen zum Depalettieren abgelegt werden.

(A) Trenner-Assistent

- 1. Tippen Sie in der Programmstruktur auf den Knoten Zwischenlage-Aktion.
- 2. Klicken Sie im folgenden Fenster auf Weiter.
- Tippen Sie auf die Schaltfläche Hierher bewegen und halten Sie die Schaltfläche Auto gedrückt oder verfahren Sie den Roboter mit der Schaltfläche Manuell zur Zwischenlage-Position. Tippen Sie auf Weiter. Tippen Sie auf Weiter.

UNIVERSAL ROBOTS

- 4. Tippen Sie auf **Wegpunkt setzen**, um den Annäherungs-Wegpunkt anzulernen (siehe 24.10.1. Bewegen auf Seite 153). Tippen Sie auf **Weiter**.
- 5. Wiederholen Sie Schritt 3.
- 6. Tippen Sie auf **Wegpunkt setzen**, um den Ausgangs-Wegpunkt anzulernen (siehe 24.10.1. Bewegen auf Seite 153). Tippen Sie auf **Weiter**.
- 7. Tippen Sie auf Fertigstellen.
- 8. Jetzt können Sie in den Ordnern Aufnahme Trenner, Ablage Trenner und Werkzeugaktionen in der Programmstruktur geeignete Aktionsknoten hinzufügen.

(B) Manuelle Konfiguration

- 1. Tippen Sie in der Programmstruktur auf den Knoten Zwischenlage-Aktion.
- 2. Tippen Sie im Zwischenlage-Aktion-Startbildschirm auf Manuelle Konfiguration.
- 3. Tippen Sie auf **Zur Zwischenlage-Position bewegen**, um den Roboter zur Zwischenlage-Position bewegen.
- 4. Klicken Sie in der Programmstruktur auf den Annäherungs-Knoten, um dem Roboter den Annäherungs-Wegpunkt anzulernen (siehe 24.10.1. Bewegen auf Seite 153).
- 5. Tippen Sie in der Programmstruktur auf den Knoten Trenner-Aktion. Wiederholen Sie Schritt 3.
- 6. Klicken Sie in der Programmstruktur auf den Knoten Ausgang, um dem Roboter den Ausgangs-Wegpunkt anzulernen (siehe 24.10.1. Bewegen auf Seite 153).
- 7. Jetzt können Sie in den Ordnern Aufnahme Trenner, Ablage Trenner und Werkzeugaktionen in der Programmstruktur geeignete Aktionsknoten hinzufügen.

Optionen zur Anpassung eines Palettierungs-Programms

Sie können Ihr Palettierungs-Programm in der folgenden Weise anpassen:

- Wenn Ihre Palette nach der Erstellung eines Palettierungs-Programms angepasst oder neu positioniert werden muss, müssen Sie nur die Palettierungs-Funktion neu anlernen (siehe 25.17. Koordinatensys auf Seite 227), da die Palettierungssequenz in Bezug zur Funktion festgelegt ist. Somit passen sich alle anderen Programmkomponenten automatisch an die neu angelernte Position an.
- Sie können die Eigenschaften der Verschiebungsbefehle bearbeiten (siehe 24.10.1. Bewegen auf Seite 153).
- Sie können die Geschwindigkeiten und Blendradien ändern (siehe 24.10.1. Bewegen auf Seite 153).
- Sie können den Sequenzen An jedem Element oder Trenner-Aktion weitere Programmknoten hinzufügen.

24.12.2. Suchen

Die Suchfunktion verwendet einen Sensor, um zu bestimmen, wann die korrekte Position erreicht ist, um ein Element zu fassen oder loszulassen. Diese Funktion ist für Arbeiten an Stapeln aus Artikeln mit unterschiedlicher Stärke konzipiert, oder wenn die genauen Positionen der Artikel nicht bekannt oder schwierig zu programmieren sind.

Der Sensor kann ein Drucktastenschalter, ein Drucksensor oder ein kapazitiver Sensor sein.

Um einen Suchvorgang zu programmieren, definieren Sie Folgendes:

- A-der Ausgangspunkt.
- *B bis C* die Stapelrichtung. Das bedeutet, dass der Stapel beim Stapeln wächst und beim Entstapeln schrumpft.
- *D*-die Stärke der Artikel auf dem Stapel.

Sie müssen außerdem die Voraussetzung für die nächste Stapelposition sowie eine spezielle Programmabfolge, die an jeder Stapelposition ausgeführt wird, definieren.

Geschwindigkeit und Beschleunigungen müssen für die Bewegung im Stapel bestimmt werden.

StapeIn

Beim Stapeln bewegt sich der Roboterarm zu Punkt *A* und bewegt sich dann in die *Gegenrichtung*, um die nächste Stapelposition zu suchen. Wenn die nächste Stapelposition gefunden wird, merkt sich der Roboter die Position und führt die spezielle Abfolge aus.

In den folgenden Runden startet der Roboter die Suche aus dieser Position, erweitert um die Stärke des Elements in der Stapelrichtung.

Das Stapeln ist beendet, wenn die Stapelhöhe eine bestimmte Anzahl erreicht hat oder der Sensor ein Signal gibt.

Entstapeln

Ausführen Programm Installation		PROGRAMM <u Installation de</u 	nbenannt>* fault	Neu Öffnen Speichern	с с с с	
> Basis-Befehle	Q	Befehl	Grafik	Variablen		
> Fortgeschritten	1 V Roboterprogramm	Entetan	oln			
✔ Assistenten	2 🕈 🕂 FahreAchse	Entstap	ein			
Suchen	3 Wegpunkt_1					
outrien a	4 – Einstellen					
Kraft	5 – 🛛 Warten					
Palettierung	6 – 🖬 Meldung					
Förderband	7 🕘 Halt		Das E	ntstapeln wird durch folgende Paran	neter definiert:	
rorderband	8 🕖 🗩 Kommentar			Augangenesition		
	9 🕈 🖿 Ordner		B B: Rici	htung des Stapels - Anfang		
	10 - <leer></leer>		C: Ric	htung des Stapels - Ende		
4	11 🕈 🖸 Schleife		C D: Dic	ke des Stapeltells		
	12 - <leer></leer>					
	13 – La Aufruf	_				
	14 s var_2:=2 * force()					
	15 🗣 🕨 If					
	16 <leer></leer>	Die nächste S	apelposition ist	erreicht, wenn:		
	17 If Script			f(x)		
	18 • Switch					
	19 O limer_1	Dicke des S	tapelteils	Übergeordnete Parameter		
			0.0 mm	Werkzeuggeschwindigkeit	250	mm/s
		/		Werkzeugbeschleunigung	1200	mm/s²
		Sequenz vi	or Start ach Ende	Auf Werkseinstellungen zu	ırücksetzen	
Normal	Geschwindigkeit 🥌		100%		Simulation	

Beim Entstapeln bewegt sich der Roboterarm von Punkt *A* in die angegebene Richtung, um nach dem nächsten Element zu suchen. Die Voraussetzung auf dem Bildschirm bestimmt, wann das nächste Element erreicht wird. Wenn die Bedingung erfüllt ist, merkt sich der Roboter die Position und führt die spezielle Abfolge aus.

In den folgenden Runden startet der Roboter die Suche aus dieser Position, erweitert um die Stärke des Elements in der Stapelrichtung.

Ausgangsposition

Das Stapeln beginnt mit der Ausgangsposition. Wird die Ausgangsposition weggelassen, fängt das Stapeln an der aktuellen Position des Roboterarms an.

Richtung

Ausführen Programm Installation		1	PROGRAMM < Installation de	unbenannt>' :fault	»* 📮 📴 📮 c c 🚍
> Basis-Befehle		۹	Befehl	Grafik	Variablen
 Fortgeschritten Assistenten Suchen Kraft Palettierung Förderband 	Image: Second system 2 ♥ ♣ FahreAchse 3 ● Ø Wegpunkt_1 4 ● Einstellen 5 ■ Ø Warten 6 □ Meldung 7 ● Halt 8 ● Kommentar 9 ● Ø Ordner 10 ● ● • ● Schleife 12 ● ● • ● Schleife 12 ● ● • ● Schleife 12 ● ● • ● 14 ● 15 ● Jrf 16 ● • ● 17 ● Script 18 ● Switch 19 ● Time_1 20 ● ■ Entstapein 21 ● ● Richtarge		Richtun Die Richtung Stoppen	g Wird durch	i einen Vektor zwischen zwei Wegpunkten definiert. 500,00 mm f(x) Übergeordnete Parameter Werkzeuggeschwindigkeit Uerkzeugbeschleunigung Uomm/s ² Auf Werkseinstellungen zurücksetzen
Normal	Geschwindigkeit			100%	Simulation

Die Richtung, vorgegeben durch die Positionen *B bis C*, wird als Positionsdifferenz von TCP von *B* zu TCP von *C* berechnet.

Die Richtung berücksichtigt nicht die Ausrichtung der Punkte.

Ausdruck der nächsten Stapel-Position

Der Roboterarm bewegt sich entlang des Richtungsvektors, während er fortlaufend bewertet, ob die nächste Stapel-Position erreicht worden ist. Wenn der Ausdruck als True (wahr) bewertet wird, wird die spezielle Sequenz ausgeführt.

"VorStart"

Die optionale VorStart-Sequenz wird kurz vor Beginn des Vorgangs ausgeführt. Dies kann genutzt werden, um auf Freigabesignale zu warten.

"NachEnde"

Die optionale NachEnde-Sequenz wird kurz nach Ende des Vorgangs ausgeführt. Dies kann genutzt werden, um ein Signal für Fließbandbewegung zur Vorbereitung auf den nächsten Stapel zu geben.

Einlege/Entnahme-Sequenz

Die "Pick and Place"-Sequenz (Einlege/Entnahme) ist eine spezielle Programmsequenz, die bei jeder Stapelposition ausgeführt wird, ähnlich dem Palettiervorgang.

24.12.3. Kraft

HINWEIS

Die gleichzeitige Verwendung dieser Funktion mit der Fließbandverfolgung und/oder Pfadverschiebung kann zu einem Programmkonflikt führen.

 Verwenden Sie diese Funktion nicht zusammen mit der Flie
ßbandverfolgung oder Pfadverschiebung.

Der Kraftmodus eignet sich für Anwendungen, bei denen die eigentliche TCP-Position entlang einer vorgegebenen Achse keine ausschlaggebende Bedeutung hat, sondern eher eine bestimmte Kraft entlang dieser Achse benötigt wird. Dies ist beispielsweise der Fall, wenn der Roboter-TCP auf eine gekrümmte Oberfläche trifft oder beim Schieben oder Ziehen eines Werkstücks.

Der **Kraftmodus** lässt sich auch auf bestimmte Drehmomente um vorgegebene Achsen anwenden. Trifft der Roboterarm auf einer Achse mit Krafteinstellung ungleich Null auf keinerlei Hindernis, so tendiert er entlang/an dieser Achse zur Beschleunigung. Auch wenn eine Achse als konform ausgewählt wurde, versucht das Roboterprogramm den Roboter entlang dieser Achse zu bewegen. Mithilfe der Kraftregelung ist jedoch sichergestellt, dass der Roboterarm die vorgegebene Kraft dennoch erreicht.

HINWEIS

Wenn sich ein Kraftmodus innerhalb von If, Elself oder Loop befindet und die Option "Bedingung kontinuierlich prüfen" ausgewählt ist, können Sie am Ende des Ausdrucks ein endforcemode()-Script hinzufügen, um die Kraftregelung zu beenden.

WARNUNG

- 1. Vermeiden Sie zu starke Verlangsamung kurz vor Eintritt in den Kraftmodus.
- 2. Vermeiden Sie zu starke Beschleunigung im Kraftmodus, da dies zu Genauigkeitsverlusten bei der Kraftregelung führt.
- 3. Vermeiden Sie parallele Bewegungen zu konformen Achsen vor Eintritt in den Kraftmodus.

Auswahl von Funktionen

Im **Funktionsmenü** wird das vom Roboter während des Betriebs im Kraftmodus zu verwendende Koordinatensystem (Achsen) ausgewählt. Die im Menü enthaltenen Funktionen sind diejenigen, die bei der Installation festgelegt wurden (siehe 25.17. Koordinatensys auf Seite 227).

Kraftmodustyp

Die unten aufgeführten Kraftmodustypen bestimmen, wir die ausgewählte Funktion zu interpretieren ist.

- **Einfach** : In diesem Kraftmodus ist nur eine Achse konform. Die Kraftanwendung entlang dieser Achse ist anpassbar. Die gewünschte Kraft wird immer entlang der z-Achse des Bezugs-Koordinatensystems angewendet. Bei Linienfunktionen geschieht dies entlang der y-Achse.
- Rahmen : Der Rahmen-Modus ermöglicht eine fortgeschrittenere Anwendung. Die Positionsanpassung und die Kräfte in allen sechs Freiheitsgraden können hier unabhängig voneinander eingestellt werden.
- Punkt : Bei Auswahl des Punkt-Modus verläuft die y-Achse des Task-Rahmens vom Roboter-TCP zum Ursprung des Bezugs-Koordinatensystems. Der Abstand zwischen dem Roboter-TCP und dem Ursprung des Bezugs-Koordinatensystems muss mindestens 10 mm betragen. Der Task-Rahmen ändert sich während der Ausführung mit der Position des Roboter-TCPs. Die x- und z-Achse des Task-Rahmens sind von der ursprünglichen Ausrichtung des Bezugs-Koordinatensystems abhängig.
- Bewegung : Bewegung bedeutet, dass sich der Task-Rahmen mit der Richtung der TCP-Bewegung verändert. Die x-Achse des Task-Rahmens ist eine Projektion der TCP-Bewegungsrichtung auf der Ebene zwischen x- und y-Achse des Bezugs-Koordinatensystems. Die y-Achse ist orthogonal zur Bewegung des Roboterarms ausgerichtet und liegt in der x-y-

Ebene des Bezugs-Koordinatensystems. Dies kann beim Entgraten entlang eines komplexen Pfades hilfreich sein, bei dem eine zur TCP-Bewegung senkrechte Kraft benötigt wird.

Wird in den Kraftmodus übergegangen, wenn der Roboterarm stillsteht, so gibt es keine konformen Achsen bis die TCP-Geschwindigkeit über Null liegt. Wenn der Roboterarm später (immer noch im Kraftmodus) wieder stillsteht, hat der Task-Rahmen die gleiche Ausrichtung wie zu dem Zeitpunkt, als die TCP-Geschwindigkeit das letzte Mal über Null lag.

Für die letzten drei Kraftmodustypen wird der tatsächliche Task-Rahmen während der Ausführung im Tab (siehe 24.8. Grafik-Tab auf Seite 151) angezeigt, wenn der Roboter im Kraftmodus betrieben wird.

24.12.4. Auswahl des Kraftwertes

- Der Kraft- oder Drehmomentwert kann für konforme Achsen eingestellt werden, so dass der Roboterarm seine Position anpasst, um die ausgewählte Kraft zu erreichen.
- Bei nichtkonformen Achsen folgt der Roboterarm der Bahn, die mit dem Programm festgelegt wurde.

Für Übersetzungsparameter wird die Kraft in Newton [N] angegeben, für Rotationsparameter wird das Drehmoment in Newtonmeter [Nm] angegeben.

HINWEIS

Folgende Schritte sind erforderlich:

- Verwenden Sie die Scriptfunktion get_tcp_force() in einem separaten Thread, um Ist-Kraft und -Drehmoment auszulesen.
- Korrigieren Sie den Vektor für den Schlüssel, falls die tatsächliche Kraft und/oder Drehmoment niedriger sein sollte als benötigt.

24.12.5. Geschwindigkeitsbegrenzung

Kartesische Höchstgeschwindigkeit ist für konforme Achsen einstellbar. Der Roboter bewegt sich bei dieser Geschwindigkeit mit Kraftregelung, solange er nicht mit einem Objekt in Berührung kommt.

24.12.6. Testeinstellungen für Kraft

Über den als **Test** gekennzeichneten Ein-/Aus-Schalter wird die **Freedrive**-Taste hinten am Teach Pendant vom normalen Freedrive-Modus auf das Testen der Kraft umgeschaltet.

Wird bei eingeschalteter **Test-Schaltfläche** die **Freedrive**-Taste hinten am Teach Pendant gedrückt, führt der Roboter den Kraftbefehl ohne Durchlauf des Programms direkt aus, sodass die Einstellungen vor der eigentlichen Ausführung des Programms geprüft werden können. Diese Funktion ist besonders nützlich, um sicherzustellen, dass konforme Achsen und Kräfte korrekt ausgewählt und eingestellt wurden. Halten Sie den Roboter-TCP einfach mit einer Hand, drücken Sie mit der anderen Hand die **Freedrive-Taste** und beobachten Sie, in welche Richtungen der Roboterarm bewegt oder nicht bewegt werden kann.

UNIVERSAL ROBOTS

Nach Verlassen dieses Bildschirms wird die Test-Schaltfläche automatisch abgeschaltet, so dass **die Freedrive**-Taste hinten am Teach Pendant wieder für den regulären **Freedrive**-Modus genutzt werden kann.

Die **Freedrive**-Schaltfläche ist nur wirksam, wenn eine gültige Funktion für den Kraft-Befehl ausgewählt wurde.

24.12.7. Förderbandverfolgung

HINWEIS

Die gleichzeitige Verwendung dieser Funktion mit Force und/oder Pfadverschiebung kann zu einem Programmkonflikt führen.

• Verwenden Sie diese Funktion nicht zusammen mit Force oder der Pfadverschiebung.

Fließband-Tracking ermöglicht es dem Roboterarm, die Bewegung von bis zu zwei Fließbändern zu verfolgen. Förderbandverfolgung wird im Tab Installation festgelegt (siehe Abschnitt 25.14. Einstellungen für Förderbandverfolgung auf Seite 222).

	Einstellungen für Förderba	ndverfolauna	
<u>•</u> ТСР	Conveyor 1 (deaktiviert)		
Montage	Fließbandverfolgung aktivieren		
E/A- Einstellung	Förderband-Parameter		
Variablen	Encoder-Typ	Encoder wählen 👻	
Autostart			
Sanfter Übergang			
Förderband			
Schrauben	Parameter für Förderbandsbandv	rerfolgung	
Werkzeug E/A	Förderbandtyp auswählen	Förderbandtyp wählen 🔻	
Home			
Sicherheit			
Koordinatensys			
Feldburg			

Der Programmknoten "Förderbandverfolgung" steht im Tab Programm unter dem Tab Vorlagen zur Verfügung. Alle Bewegungen unter diesem Knoten sind beim Fließband-Tracking erlaubt, stehen aber im Verhältnis zu der Fließbandbewegung. Übergänge sind beim Beenden des Fließband-Trackings nicht erlaubt, sodass der Roboter vollständig vor der nächsten Bewegung stoppt.

Verfolgen eines Fließbands

- 1. Tippen Sie in der Kopfzeile auf Programm.
- Tippen Sie auf Vorlagen und wählen Sie Förderbandverfolgung, um einen Förderbandverfolgungs-Knoten zur Programmstruktur hinzuzufügen. Alle Bewegungen unter dem Fließband-Tracking-Knoten verfolgen die Bewegung des Fließbands.
- 3. Wählen Sie unter "Förderbandverfolgung" in der oberen Dropdownliste **Conveyor 1** oder **Conveyor 2**, um festzulegen, welches Fließband zu verfolgen ist.

HINWEIS

Wenn sich ein "Förderbandverfolgungs"-Knoten in einem If, Elself oder Loop befindet und die Option "Bedingung kontinuierlich prüfen" ausgewählt ist, können Sie am Ende des Ausdrucks ein end_conveyor_tracking()-Script hinzufügen, um die Förderbandverfolgung zu beenden.

24.12.8. Schraubtechnik

Der Programmknoten **Schrauben** sorgt für eine einfache Möglichkeit, um eine Schraubapplikation für einen befestigten Schraubendreher einzubinden. Die Konfiguration des Schraubendrehers und der Anschluss an den Roboter werden im Tab Installation (siehe 25.1. Allgemein auf Seite 207) definiert.

Hinzufügen eines Schraubtechnik-Knotens

- 1. Tippen Sie in der Kopfzeile auf Programm.
- 2. Tippen Sie unter "Vorlagen" auf Schrauben.
- 3. Wählen Sie **Hineinschrauben**, um der Schraube in Anzugsrichtung (nach innen) zu folgen, oder **Heraus schrauben**, um der Schraube in Löserichtung (nach außen) zu folgen. Diese Auswahl hat nur Auswirkungen auf die Roboterbewegung beim Verfolgen der Schraube und auf die Messberechnungen.
- 4. In der **Programmauswahl** können Sie ein Schraubprogramm in Abhängigkeit von den **Programmauswahl**-Signalen in der Installation auswählen.
- 5. Wählen Sie Startpunkt hinzufügen, um der Programmstruktur ein FahreLinear hinzuzufügen, das ausgeführt wird, wenn der Schraubendreher bereits läuft. Wählen Sie Maschinenfehler-Handler aktivieren, um gegebenenfalls die Programmstruktur mit einer Korrekturmaßnahme zu ergänzen, bevor der Schraubvorgang startet.

Wählen Sie unter **Prozess Der Schraube folgen mit** aus, um den Schraubvorgang folgendermaßen zu beeinflussen:

• Wählen Sie Kraft, um festzulegen, wie viel Kraft auf eine Schraube ausgeübt wird. Wählen Sie dann max. Geschwindigkeit, damit sich der Roboter mit dieser Geschwindigkeit bewegt, solange er keinen Kontakt mit der Schraube hat.

VORSICHT

Setzen Sie das Schraubendreher-Bit über der Schraube an, bevor Sie ein Schraub-Programm starten. Jegliche auf die Schraube ausgeübte Kraft kann die Programmleistung des Schraubtechnik-Programms beeinflussen.

- Geschwindigkeit: Wählen Sie für den Roboter zur Verfolgung der Schraube eine feste Werkzeuggeschwindigkeit und Beschleunigung aus.
- Ausdruck: Wählen Sie analog zum If-Befehl (siehe 24.11.2. If auf Seite 171) Ausdruck aus, um die Bedingung zu beschreiben, unter der der Roboter die Schraube verfolgen soll.

24.12.9. Schraubtechnik Bis

Der Programmknoten Schrauben enthält eine obligatorischen **Programmstopp**-Knoten, der die Stoppkriterien für den Schraubvorgang festlegt.

Ausführen Programm Installation		PROGRAMM <	unbenannt>* efault*	Neu Öffnen	Speichern	с с с с	≡
> Basis-Befehle	٩	Befehl	Grafik	Variablen			
✓ Fortgeschritten Schleife	1 ▼ Roboterprogramm 2 ♥ ▼ Schrauben	Stopbe	dingung				
UnterProg Zuweisung	3 ♥ → Stoppeangung 4 ● Befehle für diese Aufgabe unte 5 ♥ → Stopbedingung	Stopbedi Stopbedi	ngung angebe ngung erreicht	en. Der Roboter t ist.	r führt den Schrau	Ibprozess aus bis die	
If	6 Befehle für diese Aufgabe unte	Erfolgre	eich				
Script			ок				
Event			Zeit]		6	
Switch		▶ S	trecke		•		
Timer		Au	isdruck				
Schrauben		Nicht ei	folgreich		_		
Assistenten		Ni	cht OK		•		
		S	trecke				
		Ті	meout]		-	
	 	+ s	topbedingung	g hinzufügen			
Normal	Geschwindigkeit 🥌		100%	0 (Simulation	

Hier können Sie die folgenden Stoppkriterien definieren:

- Erfolg: Das Schrauben wird fortgesetzt, bis der Abschluss der von Ihnen gewählten Option erkannt wird. Nur eine (1) Erfolgsbedingung ist zulässig.
- Fehler: Das Schrauben wird fortgesetzt, bis für die von Ihnen gewählte(n) Option(en) ein Fehler erkannt wird. Es sind mehrere Fehlerbedingungen möglich.

24.13. URCaps

24.13.1. Remote-TCP und Werkzeugpfad URCap

Der Remote-TCP und der Werkzeugpfad URCap erlauben es Ihnen, Remote Tool Center Points (RTCP) einzustellen, wobei der Werkzeugmittelpunkt ein fester Punkt im Raum mit einem relativen Bezug zur Roboterbasis ist. Der Remote TCP und der Toolpath URCap erlauben es Ihnen darüber hinaus, Wegpunkte und Kreisbewegungen zu programmieren sowie Roboterbewegungen zu generieren, die auf importierten Werkzeugpfad-Dateien basieren und in CAD/CAM-Software von Drittanbietern definiert wurden.

Für die Verwendung von Remote TCP URCaps muss Ihr Roboter zuvor registriert werden (siehe 18.7. Roboter-Registrierung und URCap-Lizenzdateien auf Seite 107). Der RTCP funktioniert in Anwendungen, bei denen der Roboter Elemente relativ zu einem fixierten Werkzeug greifen und bewegen muss. Der RTCP dient zusammen mit den Befehlen RTCP_MoveP und RTCP_CircleMove dazu, ein gegriffenes Teil mit konstanter Geschwindigkeit, relativ zum fixierten Werkzeug zu bewegen.

		PROGRAM <unnamed> INSTALLATION default</unnamed>	New Open	Save	
> General	Remote TCP & Toolpath				
> Safety	Start the controller before using th	ic LIPCap.			
> Features	Start Stop				
> Fieldbus	Controller Status: STOPPED				
✔ URCaps					
Remote TCP & Toolpath	Select an option below based on yo Remote TCP Toolpath Moves Regular TCP Toolpath Moves	bur application: Linear & Circle Moves			
Power off	Speed C	100%	•••	O Sim	ulation

Ähnlich wie bei einem normalen TCP (siehe 25.2. TCP-Konfiguration auf Seite 207) können Sie einen RTCP im Tab "Installation" definieren und benennen. Außerdem können Sie die folgenden Aktionen ausführen:

- Hinzufügen, Umbenennen, Ändern und Entfernen von RTCPs
- · Verstehen des Standard-RTCP und aktiven RTCP
- RTCP-Position anlernen (Teaching)
- Kopieren der RTCP-Ausrichtung

Einrichtung des RTCP von einer Funktion

Richten Sie einen RTCP über eine Funktion ein, um den Roboter relativ zum RTCP bewegen zu können und dabei RTCP-Wegpunkte und RTCP-Kreisbewegungen aufzunehmen.

- 1. Tippen Sie auf das Plus-Symbol, um einen neuen RTCP **RTCP** zu erstellen. Oder wählen Sie aus dem Dropdown-Menü einen vorhandenen RTCP aus.
- 2. Tippen Sie auf das Dropdown-Menü Werte aus einem Koordinatensystem kopieren und wählen Sie eines aus. Prüfen Sie, ob die RTCP-Ausrichtungswerte mit denen der ausgewählten Funktion übereinstimmen.

24.13.2. Bewegungsarten für Remote-TCP

RTCP_MoveP

Wie bei einem normalen FahreP definiert der RTCP_MoveP (RTCP_FahreP) die Werkzeuggeschwindigkeit und die Beschleunigung, mit der der Roboterarm relativ zum Remote-TCP bewegt wird. Siehe 25.2. TCP-Konfiguration auf Seite 207.

RTCP Circle Move

Wie bei einer normalen Kreisbewegung kann die RTCP-Kreisbewegung zu einem RTCP_MoveP hinzugefügt werden, um Kreisbewegungen auszuführen. Siehe 25.2. TCP-Konfiguration auf Seite 207.

HINWEIS

Die maximale Geschwindigkeit einer Kreisbewegung kann unter dem festgelegten Wert liegen. Wenn der Kreisradius *r* und die maximale Beschleunigung *A* ist, dann kann die maximale Geschwindigkeit aufgrund der Zentripetalbeschleunigung nicht größer werden als *Ar*.

24.13.3. Remote-TCP-Wegpunkt

Wie normale Wegpunkte dienen RTCP-Wegpunkte einer linearen Bewegung eines Werkzeugs mit konstanter Geschwindigkeit und kreisförmigen Blend-Bewegungen. Die Standardgröße für den Blend-Radius ist ein gemeinsamer Wert zwischen allen Wegpunkten. Ein kleinerer Blend-Radius schärft die Wegkurven. Ein größerer Blend-Radius glättet den Pfad. RTCP-Wegpunkte werden angelernt, indem der Roboterarm physisch in eine gewünschte Position bewegt wird.

		PROGRAM <unnamed>*</unnamed>	Open Save	° ° 📕
> Basic	٩	Command Graphics	Variables	
> Advanced> Templates	1 ▼ Robot Program 2 ∲ ▼ RTCP_MoveP	Remote TCP Wayp	point	
VURCaps Toolpath Move	S — ALCPWaypoint_I	RTCPWaypoint_1		
Remote TCP Move		Set Waypoint	Move he	re
		O Use shared blend radius	OUse shared parameters	
		O Blend with radius	O Tool speed	250 mm/s
ৰ		▶ 25 mm	Tool acceleration	200 mm/s ²
		+ Waypoint + CircleMove + Toolpath	k	
	▲ ╄ ७ ♂ ₭ ₫ छ छ ॼ			
Power off	Speed 🥌	100%	00	Simulation

RTCP-Wegepunkte anlernen

- 1. Fügen Sie einen **RTCP_MoveP**-Knoten im Programm-Tab ein.
- 2. Tippen Sie auf dem RTCP_MoveP-Knoten auf **Einstellen**, um den "Bewegen"-Bildschirm aufzurufen.
- 3. Verwenden Sie im "Bewegen"-Bildschirm den **Teach-Modus** oder **Jog**, um den Roboter in einer gewünschten Konfiguration zu positionieren.
- 4. Tippen Sie zur Bestätigung auf das grüne Häkchen.

Einrichten eines RTCP Wegepunkts

Verwenden Sie Überblendungen, damit der Roboter reibungslos zwischen zwei Bahnkurven wechseln kann. Tippen Sie auf **Übergeordneten Blendradius verwenden** oder auf **Verschleifen mit Radius**, um den Überblendungsradius für einen Wegpunkt aus einem RTCP_MoveP festzulegen.

HINWEIS

Ein physikalischer Zeitknoten (z. B. Bewegen, Warten) kann nicht als vererbter Knoten eines RTCP_MoveP-Knotens verwendet werden. Wird ein nicht unterstützter Knoten als vererbter Knoten zu einem RTCP_MoveP-Knoten hinzugefügt, wird das Programm als ungültig bewertet.

24.13.4. Remote TCP Werkzeugpfad

Der Remote-TCP und Werkzeugpfad URCap erzeugen Roboterbewegungen automatisch, was es einfacher macht, komplexeren Bahnkurven akkurat zu folgen.

Konfigurieren eines Remote-TCP-Werkzeugpfads

- 1. Wählen Sie **Remote TCP Werkzeugpfadbewegungen** auf der Remote TCP & Toolpath Startseite, um zum Arbeitsablauf zu gelangen.
- 2. Folgen Sie den Anweisungen unter dem Tab Anweisungen.

Ein Remote-TCP Werkzeugpfad Move erfordert die folgenden Hauptkomponenten:

- Werkzeugpfad-Datei
- Remote TCP
- Remote TCP PCS

Konfigurieren eines Werkzeugs mit CAD/CAM-Software

Ein Werkzeugweg definiert Ausrichtung, Bahnverlauf, Geschwindigkeit oder Vorschub und Bewegungsrichtung des Werkzeugs.

- 1. Erstellen oder importieren Sie ein CAD-Modell eines Teils.
- 2. Richten Sie ein Teil-Koordinaten-System (PCS) ein, das am Teil fixiert ist.
- 3. Erstellen Sie einen Werkzeugpfad, relativ zum PCS, basierend auf Teile-Features
- 4. Simulieren Sie die Werkzeugpfad-Bewegung, um zu überprüfen, ob die Erwartungen erfüllt werden.
- 5. Exportieren Sie den Werkzeugpfad in eine G-Code-Datei mit .nc-Dateierweiterung.

Importieren eines G-Code Werkzeugpfads in PolyScope

- 1. Laden Sie die Werkzeugpfad-Dateien ins Stammverzeichnis eines USB-Sticks. Werkzeugpfad-Dateien müssen auf die Erweiterung .nc enden.
- 2. Stecken Sie den USB-Stick in das Teach-Pendant.
- 3. Tippen Sie in der Kopfzeile auf Installation > URCaps und wählen Sie Remote TCP & Toolpath. Wählen Sie Remote TCP Werkzeugpfadbewegungen und danach Werkzeugpfad.
- 4. Wählen Sie die nach Polyscope zu importierenden Werkzeugpfad-Dateien.

24.13.5. Remote TCP

Konfigurieren eines Remote-TCP für Werkzeugpfad-Bewegungen

- 1. Bestimmen Sie die Werkzeugausrichtung am ersten Wegpunkt in der CAM-Umgebung.
- 2. Verwenden Sie Freedrive, um das Teil mit dem Greifer manuell zu greifen.
- 3. Wählen Sie den Ort des Remote-TCP
- 4. Verwenden Sie den Positionsassistenten, um die positiven Werte zu erhalten.
- 5. Passen Sie den Roboter an, bis die gewünschte Teilpose für die Annäherung an den Remote-TCP erreicht ist.
- 6. Stellen Sie sich die Werkzeugausrichtung am ersten Wegpunkt für das physische Teil bildlich vor. Die positive Z-Achse sollte von der Teilefläche weg zeigen.
- 7. Erstellen Sie eine Ebene-Funktion mit derselben Ausrichtung wie im vorherigen Schritt

angedacht.

8. Legen Sie die Remote-TCP-Ausrichtung durch Kopieren der Werte aus der Ebene-Funktion fest. Die gewünschte Teil-Pose wird beibehalten, während der Werkzeugpfad ausgeführt wird.

24.13.6. Remote TCP PCS

Das Remote-TCP-Teil-Koordinatensystem (PCS) ist als fixe Größe, relativ zu dem Roboterwerkzeugflansch definiert. Tippen Sie auf den Zauberstab auf dem PolyScope-Bildschirm, um den Assistenten zu aktivieren und den Remote-TCP PCS anzulernen. Sie können eine der beiden im Folgenden beschriebenen Anlernmethoden verwenden.

> General	Remote TCP & Toolpath
> Safety	hatrutions Taylath Demote TCD Dec
> Features	
> Fieldbus	Remote TCP Part Coordinate System Defined with respect to the robot tool frame.
✔ URCaps	
Remote TCP & Toolpath	Position
	X 0.00 mm
	Y 0.00 mm
	Z 0.00 mm
	Orientation
	RX 0.0000 rad
	RY 0.0000 rad
	RZ 0.0000 rad
	Teach by defining origin, +X axis, and +Y direction of PCS
	O Teach using four reference points on part's surface
	Next 🔀 Cancel

Konfigurieren eines Remote-TCP PCS

Verwenden Sie diese Methode, wenn das PCS auf die Teiloberfläche eingestellt werden kann.

- 1. Verwenden Sie Freedrive, um das Teil mit dem Greifer manuell zu greifen.
- 2. Wählen Sie einen Remote-TCP, um die Referenzpunkte anzulernen. Für höhere Genauigkeit richten Sie einen vorübergehenden, scharfen Remote-TCP ein, um diesen Anlernvorgang abzuschließen.
- 3. Verfahren Sie den Roboter für den Remote TCP, so dass er den Ursprung, die positive X-Achsen- und positive Y-Achsenrichtung des PCS auf dem Teil berührt.
- 4. Tippen Sie Einstellen, um den Anlernvorgang abzuschließen. Die Positons- und Ausrichtungswerte werden automatisch ausgefüllt.

Alternativ verwenden Sie diese Methode:

UNIVERSAL ROBOTS

- 1. Wählen Sie drei oder vier Referenzpunkte auf der Teiloberfläche.
- 2. Notieren Sie die x-, y-, z-Koordinaten der ausgewählten Referenzpunkte, relativ zum PCS in der CAD/CAM-Software.
- 3. Verwenden Sie Freedrive, um das Teil mit dem Greifer manuell zu greifen.
- 4. Wählen Sie einen Remote-TCP, um die Referenzpunkte anzulernen. Für höhere Genauigkeit richten Sie einen vorübergehenden, scharfen Remote-TCP ein, um diesen Anlernvorgang abzuschließen.
- 5. Geben Sie die Koordinaten für den ersten Referenzpunkt ein.
- 6. Verfahren Sie den Roboter für den Remote-TCP, um den ersten Referenzpunkt auf dem Teil zu berühren.
- 7. Wiederholen Sie die Schritte fünf und sechs für die anderen Referenzpunkte.

Einrichten eines Variablen-PCS

Für fortgeschrittene Anwendungsfälle, in denen das Teil nicht mit hoher Gleichmäßigkeit erfasst wird, kann man ein Variablen- PCS einrichten, das den Werkzeugpfad entsprechend der Position und Ausrichtung des Teils relativ zum Roboter-Werkzeugflansch anpasst. Sie können eine an einen externen Sensor gebundene Pose-Variable erstellen, die die PCS-Position und -Ausrichtung erkennen kann.

- 1. Richten Sie einen externen Sensor ein, der die PCS-Position und -Ausrichtung erkennt. Der Sensorausgang muss an den Roboter-Werkzeugflanschrahmen umgesetzt werden.
- 2. Stellen Sie sicher, dass das PCS relativ zum Teil eingerichtet ist und die Position und Ausrichtung durch den externen Sensor erfassbar sind.
- 3. Erstellen Sie eine Pose-Variable in PolyScope, die an den externen Sensorausgang als Variable-PCS angebunden ist. Vergeben Sie einen eindeutigen Namen, zum Beispiel **variable_ rtcp_pcs_1**.
- 4. Fügen Sie einen RTCP Toolpath-Knoten hinzu.
- 5. Wählen Sie **Variable PCS** im Drop-Down-Menü in der rechten, oberen rechten Ecke der Programmseite.
- 6. Wählen Sie im Dropdown-Menü PCS auswählen variable_rtcp_pcs_1.
- 7. Erstellen Sie eine Zuordnung oder einen Script-Knoten zur Aktualisierung von **variable_rtcp_ pcs_1** vor dem RTCP-Toolpath-Knoten.

Der folgende Abschnitt erklärt, wie ein Variable-PCS in einem Remote-TCP-Werkzeugpfad-Knoten verwendet wird.
Konfigurieren eines Remote-TCP-Werkzeugpfad-Knotens

			PROGRAM <unna< b=""> INSTALLATION default</unna<>	med>*	New Open	Save	د د د د
> Basic		۹	Command	Graphic	s Variab	les	
> Advanced	1 V Robot Program		Teelnath				
> Templates	2 ♥ ▼ Toolpath_MoveP 3 ■ Toolpath 2		rooipath				
VURCaps			🖉 Toolpath	_2			Fixed PCS
Move			Select Toolpath Fi	e	Select Plane a	s PCS	Mayo to First Daint
Remote TCP Move			<toolpath file=""></toolpath>	•	<plane featur<="" th=""><th>re> ▼</th><th>Move to First Point</th></plane>	re> ▼	Move to First Point
					O Use fe	eed rate	
					🔘 Use s	hared tool speed	
•			ŀ		O Tool s	peed	250 mm/s
						barod tool accolo	ration
						narea toor accele	
						icceleration	200 mm/s²
			🕂 A toolpath file	must be se	elected.		
	↑ ↓ う ぐ × ■ 🖻	â 🔤					
O Normal	Speed (100%	(D	Simulation

- 1. Rufen Sie die Registerkarte "Programm" auf und tippen Sie auf URCaps.
- 2. Wählen Sie Remote TCP Move, um einen RTCP_MoveP-Knoten einzufügen.
- 3. Wählen Sie einen TCP und setzen Sie die Bewegungsparameter Werkzeuggeschwindigkeit, Werkzeugbeschleunigung und Blend-Radius.
- 4. Tippen Sie auf **+Werkzeugpfad**, um einen RTCP_Toolpath-Knoten einzufügen. Löschen Sie den RTCP Wegpunkt-Knoten, der standardmäßig vorliegt, wenn er nicht benötigt wird.
- 5. Wählen Sie eine Werkzeugpfad-Datei und das entsprechende Remote-TCP PCS aus dem Drop-Down-Menü.
- 6. Passen Sie die Bewegungsparameter an, falls für den RTCP- Werkzeugpfad-Knoten unterschiedliche Werte verwendet werden sollen.
- 7. Tippen Sie auf **Zum ersten Punkt bewegen**, um sicherzustellen, dass sich das gegriffene Teil dem Remote-TCP wie geplant nähert.
- 8. Testen Sie das Programm im Simulationsmodus mit niedriger Geschwindigkeit, um sicherzugehen, dass die Konfiguration korrekt ist.

HINWEIS

Sie können eine identische Roboterbewegung bei jeder Ausführung des Werkzeugpfads gewährleisten, indem Sie ein "FahreAchse" mit **Gelenkwinkel verwenden** hinzufügen, was zur Einnahme einer festen Gelenkkonfiguration vor der Ausführung des Werkzeugpfads führt. Siehe 24.10.1. Bewegen auf Seite 153

24.13.7. Gewöhnliche TCP Werkzeugpfad Bewegungen

Ähnlich wie bei der Konfiguration einer Remote-TCP-Werkzeugpfadbewegung, erfordert eine TCP-Werkzeugpfadbewegung folgendes:

- Werkzeugpfad-Datei
- Normaler TCP
- Ebene-Feature als PCS

Konfigurieren und Importieren einer Werkzeugpfad-Datei

Dies entspricht der Konfiguration eines Werkzeugpfads (siehe Konfigurieren eines Werkzeugs mit CAD/CAM-Software auf Seite 199) und dem Importieren eines Werkzeugpfads (siehe Importieren eines G-Code Werkzeugpfads in PolyScope auf Seite 200).

Konfiguration eines normalen TCP

- Folgen Sie den Anweisungen in 25.2. TCP-Konfiguration auf Seite 207, um einen normalen TCP zu konfigurieren.
- Stellen Sie sicher, dass die positive Z-Achse der Werkzeugpunkte von der Teilefläche weg zeigt.

Konfiguration eines Ebene-Feature-PCS

- 1. Erstellen Sie eine Ebene-Funktion mithilfe von **Ebene hinzufügen** oder **Anlernen (Teaching)** einer Ebene. Siehe 25.17.5. Funktion Ebene auf Seite 231.
- 2. Befestigen Sie das Teil relativ zur Roboterbasis.
- Stellen Sie sicher, dass der korrekte TCP f
 ür die Erstellung der Ebene-Funktion verwendet wird. F
 ür h
 öhere Genauigkeit richten Sie einen vor
 übergehenden, scharfen Remote-TCP ein, um diesen Anlernvorgang abzuschlie
 ßen.
- 4. Verfahren Sie den Roboter für den Remote TCP, so dass er den Ursprung, die positive X-

Achsen- und positive Y-Achsenrichtung des PCS auf dem Teil berührt.

5. Beenden Sie den Anlernvorgang und bestätigen Sie die PCS Position und Ausrichtung.

Konfigurieren eines Werkzeugpfad-Knoten

- 1. Rufen Sie die Registerkarte "Programm" auf und tippen Sie auf URCaps.
- Wählen Sie einen TCP und setzen Sie die Bewegungsparameter Werkzeuggeschwindigkeit, Werkzeugbeschleunigung und Blend-Radius. Wählen Sie die entsprechende Option Werkzeug frei um seine Z-Achse drehen. Wählen Sie dies nicht, wenn das Werkzeug der Ausrichtung um die Z-Achse in einer definierten Werkzeugpfad-Datei folgen muss.
- 3. Tippen Sie auf +Werkzeugpfad, um einen Werkzeugpfad-Knoten einzufügen.
- 4. Wählen Sie eine Werkzeugpfad-Datei und das entsprechende PCS (Ebene-Feature) im Dropdown-Menü.
- 5. Passen Sie die Bewegungsparameter an, falls für den Werkzeugpfad-Knoten unterschiedliche Werte verwendet werden sollen.
- 6. Tippen Sie auf **Zum ersten Punkt bewegen**, um zu verifizieren, dass der erste Punkt des Werkzeugpfads angefahren werden kann.
- 7. Führen Sie das Programm im Simulationsmodus mit niedriger Geschwindigkeit aus, um sicherzugehen, dass die Konfiguration korrekt ist.

	2

HINWEIS

Sie können eine identische Roboterbewegung bei jeder Ausführung des Werkzeugpfads gewährleisten, indem Sie ein "FahreAchse" mit **Gelenkwinkel verwenden** hinzufügen, was zur Einnahme einer festen Gelenkkonfiguration vor der Ausführung des Werkzeugpfads führt. Siehe 24.10.1. Bewegen auf Seite 153

25. Register Installation

25.1. Allgemein

Das Register Installation ermöglicht Ihnen das Konfigurieren der Einstellungen, die die Gesamtleistung des Roboters und von PolyScope beeinflussen.

25.2. TCP-Konfiguration

Ein **Werkzeugmittelpunkt** (TCP) ist ein Punkt auf dem Roboterwerkzeug. Jeder TCP enthält eine Verschiebung und Drehung bezogen auf die Mitte des Werkzeugausgangsflanschs.

Bei der Programmierung zur Rückkehr zu einem zuvor gespeicherten Wegepunkt bewegt ein Roboter den TCP zu der Position und Orientierung, die im Wegepunkt gespeichert ist. Wenn der TCP für lineare Bewegungen programmiert ist, bewegt er sich linear.

25.2.1. Position

Die Koordinaten x, y, z geben die TCP-Position an. Wenn alle Werte (auch die Ausrichtung) Null sind, liegt der TCP auf dem Mittelpunkt des Werkzeugflanschs und nimmt das auf dem Bildschirm dargestellte Koordinatensystem an.

25.2.2. Orientierung

Die Koordinatenfelder RX, RY und RZ geben die TCP-Ausrichtung an. Wählen Sie die Ausrichtungskoordinaten (siehe 26.5. Bearbeitungsanzeige "Pose" auf Seite 247) wie im "Bewegen"-Tab aus dem Einheiten-Dropdown-Menü über den Feldern RX, RY, RZ aus.

25.2.3. Hinzufügen, Umbenennen, Ändern und Entfernen von TCPs

Sie können die Konfiguration eines neuen TCP mit den folgenden Aktionen beginnen:

- Tippen Sie auf, um einen neuen TCP mit einem eindeutigen Namen zu definieren. Der neue TCP ist im Dropdownmenü verfügbar.
- Tippen Sie auf, um ein TCP umzubenennen.
- Tippen Sie auf, um einen ausgewählten TCP zu entfernen. Sie können den letzten TCP nicht entfernen.

Aktive TCP

Bei einer linearen Bewegung verwendet der Roboter bei der Bestimmung des TCP-Abstands stets den aktiven TCP. Mit den Befehlen "Bewegen" (siehe 24.10.1. Bewegen auf Seite 153) oder "Einstellen" kann der aktive TCP geändert werden. Die Bewegung des aktiven TCP wird im Tab Grafik (siehe 24.8. Grafik-Tab auf Seite 151) angezeigt.

Standard-TCP

Bevor ein Programm ausgeführt wird, muss der Standard-TCP als Aktiver TCP festgelegt werden.

• Wählen Sie den gewünschten TCP aus und tippen Sie auf **Als Standard festlegen**, um einen TCP als Standard festzulegen.

Der als Standard konfigurierte TCP wird im Dropdown-Menü mit einem grünen Symbol markiert.

25.2.4. Anlernen (Teaching) der TCP-Position

llgemein	Tool Center Point	TCP-Position anlernen
ТСР		
Montage		Weitere Punkte benötigt
E/A-	Position	TCP mit unterschiedlichen Orientierungen auf den gleichen Punkt
Einstellung	X 0.0 mm	Dringen.
Variablen	Y 0.0 mm	Punkt 1 festlegen
Autostart	Z 0.0 mm XASSIS	
Sanfter Übergang	Orientierung	Punkt 2 festlegen
Förderband	Einheiten Rotationsvektor [rad]	Punkt 3 festlegen
Schrauben	RX 0.0000	
Werkzeug E/A	RY 0.0000	Punkt 4 festlegen
Home	RZ 0.0000 %Assis	
icherheit	Nutzlast und Schwerpunkt	
Coordinatensys		
eldbus		Einstellen Abbrechen
	CX 0.0 mm	-
	CY 0.0 mm	
	CZ 0.0 mm ¥Assistent	

TCP-Positionskoordinaten können wie folgt automatisch berechnet werden:

- 1. Tippen Sie auf Messung.
- 2. Wählen Sie einen fixen Punkt im Wirkungsbereich des Roboters.
- 3. Verwenden Sie die Positionspfeile auf der rechten Seite des Bildschirms, um den TCP aus mindestens drei verschiedenen Winkeln zu bewegen, und um die entsprechenden Positionen des Werkzeugausgangsflanschs zu speichern.
- 4. Verwenden Sie die Schaltfläche **Einstellen**, um die verifizierten Koordinaten auf den entsprechenden TCP anzuwenden. Die Positionen müssen ausreichend vielfältig sein, damit die Berechnung richtig funktioniert. Sind sie nicht ausreichend vielfältig, leuchtet eine rote Status-LED über den Tasten.

Obwohl drei Positionen ausreichend sind, um den TCP zu bestimmen, kann die vierte Position dazu beitragen, sicherzustellen, dass die Berechnung korrekt ist. Die Qualität jedes gespeicherten Punktes in Bezug auf den berechneten TCP wird mit einer grünen, gelben oder roten LED auf der jeweiligen Taste signalisiert.

25.2.5. Anlernen (Teaching) der TCP-Ausrichtung

Allgemein	Tool Cent	er Point		TCP-Orientierung einlernen
<u>1</u> тср		TCP 🗸		
Montage				Kein Koordinatensystem ausgewählt
E/A-	Position			Wählen Sie ein Koordinatensystem und legen Sie einen Wegpunkt fes
Einstellung	Х	0.0 mm		Koordinatensystems zeigt.
Variablen	Y	0.0 mm		<nicht definiert=""></nicht>
Autostart	Z	0.0 mm	Assis	
Sanfter Übergang	Orientieru	ing		Punkt festlegen
Förderband	Einheiten	Rotationsvektor [rad]	•	
Schrauben	RX	0.0000		
Werkzeug E/A	RY	0.0000		
Home	RZ	0.0000	🎢 Assis	
Sicherheit	Nutzlast u	und Schwerpunkt		
Koordinatensys				
Feldbus	NUTZIAST:	U.UU kg 🔲 Schwerp	unkt	
	СХ	0.0 mm		
	CY	0.0 mm		
	67	0.0 mm	* Assistent	

- 1. Tippen Sie auf Messung.
- 2. Wählen Sie eine Funktion aus der Dropdown-Liste. Siehe 25.17. Koordinatensys auf Seite 227 für weitere Informationen über das Definieren von neuen Funktionen
- 3. Klicken Sie auf **Punkt festlegen** und navigieren Sie mit den **Pfeilen zum Werkzeug bewegen** zu einer Position, in der die Ausrichtung des Werkzeugs und der entsprechende TCP im ausgewählten Bezugs-Koordinatensystem zusammenfallen.
- 4. Überprüfen Sie die berechnete TCP-Ausrichtung und übertragen Sie diese auf den ausgewählten TCP durch Anklicken der Schaltfläche **Einstellen**.

25.3. Nutzlast

Damit der Roboter optimal funktioniert, müssen Sie Nutzlast, CoG und Trägheit festlegen.

Sie können in Ihrem Programm mehrere Nutzlasten definieren und zwischen diesen umschalten. Dies ist beispielsweise nützlich mit Pick-and-Place-Anwendungen, wenn der Roboter ein Objekt aufnimmt und loslässt.

25.3.1. Hinzufügen, Umbenennen, Ändern und Entfernen von Nutzlasten

Sie können die Konfiguration einer neuen Nutzlast mit den folgenden Aktionen beginnen:

- Tippen Sie auf, um eine neue Nutzlast mit einem eindeutigen Namen zu definieren. Die neue Nutzlast ist im Dropdownmenü verfügbar.
- Tippen Sie auf, um eine Nutzlast umzubenennen.
- Tippen Sie auf, um eine ausgewählte Nutzlast zu entfernen. Sie können die letzte Nutzlast nicht entfernen.

Aktive Nutzlast

Das Häkchen im Dropdown zeigt an, welche Nutzlast aktiv ist . Die aktive Nutzlast kann mit geändert werden.

Standard-Nutzlast

Bevor ein Programm startet, muss die Standard-Nutzlast als ative Nutzlast festgelegt werden.

• Wählen Sie die gewünschte Nutzlast aus und tippen Sie auf **Als Standard festlegen**, um eine Nutzlast als Standard festzulegen.

Die als Standard konfigurierte Nutzlast wird im Dropdown-Menü mit einem grünen Symbol markiert.

25.3.2. Festlegen des Schwerpunkts

Tippen Sie auf die Felder CX, CY und CZ, um den Schwerpunkt festzulegen. Die Einstellungen gelten für die ausgewählte Nutzlast.

25.3.3. Schätzung der Nutzlast

Diese Funktion ermöglicht es dem Roboter, die korrekte Nutzlast und den Schwerpunkt (CoG) einzustellen.

Verwendung des Assistenten zur Schätzung der Nutzlast

- 1. Tippen Sie auf den Tab "Installation" und unter "Allgemeine" auf Nutzlast.
- 2. Klicken Sie im Nutzlast-Bildschirm auf Messung.
- 3. Tippen Sie im Assistenten zur Schätzung der Nutzlast auf Weiter.
- Führen Sie die Schritte im Assistenten zur Schätzung der Nutzlast aus, um die vier Positionen festzulegen.
 Das Einstellen der vier Positionen erfordert das Bewegen des Roboterarms zu vier verschiedenen Positionen. Die Last der Nutzlast wird bei jeder Position gemessen.
- 5. Nachdem alle Messungen abgeschlossen sind, können Sie das Ergebnis überprüfen und tippen Sie auf **Fertigstellen**.

HINWEIS

Folgen Sie diesen Leitlinien, um die besten Ergebnisse bei der Schätzung der Nutzlast zu erhalten:

- Achten Sie darauf, dass die vier TCP-Positionen so unterschiedlich wie möglich voneinander sind
- Führen Sie die Messungen innerhalb einer kurzen Zeitspanne durch
- Vermeiden Sie das Ziehen an dem Werkzeug und/oder der angehängten Nutzlast vor und während der Schätzung
- Robotermontage und -winkel müssen in der Installation richtig definiert werden

25.3.4. Trägheit

Festlegen der Trägheitswerte

Sie können **Benutzerdefinierte Trägheitsmatrix verwenden** auswählen, um die Trägheitswerte festzulegen.

Tippen Sie auf die Felder: IXX, IYY, IZZ, IXY, IXZ und IYZ, um die Trägheit für die ausgewählte Nutzlast festzulegen.

Die Trägheit wird in einem Koordinatensystem angegeben, dessen Ursprung im Schwerpunkt (CoG) der Nutzlast liegt und dessen Achsen auf die Werkzeugflanschachsen ausgerichtet sind.

Die Standardträgheit wird als die Trägheit einer Kugel mit der vom Benutzer angegebenen Masse und einer Massendichte von 1 g/cm³ berechnet

25.4. Montage

Aus	Rihren Programm Installation	Hewegen E/A Protokoll		PROGRAMM <unbenann< b=""> ISTALLATION default</unbenann<>	t>*	Öffnen Speichern	с с Ш
\sim	 Allgemein 		Rob	oterbefestigu	ng und	Winkel	
	<u>।</u> ТСР			_	_		Σ
	Montage						
	E/A- Einstellung						2
	Variablen						_
	Autostart						Neigung
	Sanfter Übergang						च 45°
	Förderband						
	Schrauben						0,0°
	Werkzeug E/A						
	Home						45°
>	Sicherheit						₹
>	· Koordinatensys						
>	Feldbus						
			Roboterbasis drel	hen 45 °	■ 0,0°	₽ 45° ₽	
	Normal		eschwindigkeit	100%			Simulation

Die Angabe der Befestigung des Roboterarms dient zwei Zwecken:

- 1. Die richtige Darstellung des Roboterarms auf dem Bildschirm.
- 2. Der Controller wird über die Richtung der Gravitationskraft informiert.

Ein erweitertes dynamisches Modell gibt dem Roboterarm glatte und präzise Bewegungen und ermöglicht es dem Roboterarm, sich selbst im Modus **Freedrive** zu halten. Aus diesem Grund ist es wichtig, dass die Montage des Roboters korrekt erfolgt.

WARNUNG

Werden die Einstellungen des Roboterarms nicht richtig durchgeführt, kann dies zu häufigen Schutzstopps führen und/oder eine Bewegung des Roboterarms beim Drücken der **Freedrive**-Schaltfläche zur Folge haben.

Wenn der Roboterarm auf einem flachen Tisch oder Untergrund montiert ist, sind keine Änderungen auf diesem Bildschirm erforderlich werden. Wird der Roboterarm jedoch an der **Decke**, an der **Wand** oder in einem **Winkel** montiert, muss dies mithilfe der Schaltflächen angepasst werden.

Die Schaltflächen auf der rechten Seite des Bildschirms dienen der Einstellung des Winkels der Roboterarmmontage. Die drei Schaltflächen auf der rechten oberen Seite stellen den Winkel auf **Decke** (180°), **Wand** (90°), **Boden** (0°). Die Schaltflächen **Neigung** stellen einen willkürlichen Winkel ein.

Die Schaltflächen im unteren Teil des Bildschirms werden zur Drehung der Montage des Roboterarms eingesetzt, um der eigentlichen Montage zu entsprechen.

WARNUNG

Verwenden Sie die korrekten Installationseinstellungen. Speichern und laden Sie die Installationsdateien zusammen mit dem Programm.

25.5. E/A-Einstellung

Allgemein	Ansicht								
ТСР	Digital			•					
Montage	Digical								
E/A-	Eingang					Ausgang			
Einstellung	DI[0]	digital_in[0]			^	D0[0]	digital_out[0]		
Variablen	DI[1]	digital_in[1]				% D0[1]	digital_out[1]	Prog-Running	
	DI[2]	digital_in[2]	Sta	art-Prog		D0[2]	digital_out[2]		
Autostart	DI[3]	digital_in[3]	Sto	p-Prog		D0[3]	digital_out[3]		
Sanfter	DI[4]	digital_in[4]				D0[4]	digital_out[4]		
Übergang	DI[5]	digital_in[5]				D0[5]	digital_out[5]		
Förderband	DI[6]	digital_in[6]				D0[6]	digital_out[6]		
Schraubon	DI[7]	digital_in[7]				D0[7]	digital_out[7]		
Schlauben	TI[0]	tool_in[0]				то[0]	tool_out[0]		
Werkzeug E/A	TI[1]	tool_in[1]			~	TO[1]	tool_out[1]		
Home	Ausgewä	ihlte E/A: digital	out[1]						
icherheit		<u>-</u>							
	Umbener	nen				Tab E/A St	euerung		
Coordinatensys					Löschen	Deaktivier	t	~	
eldbus									
	Aktion im	ı Programm				_			
	High, wer	nn aktiv-Low, wenr	n gestoppt		-				
						-			

Auf dem E/A-Einrichtungsbildschirm kann der Benutzer E/A-Signale und Aktionen mit der E/A-Tab-Steuerung definieren. Die Arten von E/A-Signalen sind unter **Eingang** und **Ausgang** aufgelistet.

Sie können einen Feldbus verwenden, z. B. Profinet und EtherNet/IP, um auf die Register für allgemeine Zwecke zuzugreifen.

Wenn Sie die Kommunikationsschnittstelle für Werkzeuge (TCI) aktivieren, so ist der Werkzeug-Analogeingang nicht mehr verfügbar.

25.5.1. E/A Signaltyp

Um die Anzahl der unter **Eignang** und **Ausgang** aufgelisteten Signale zu begrenzen, verwenden Sie das Dropdown-Menü **Ansicht**, um den angezeigten Inhalt je nach Signaltyp zu ändern.

25.5.2. Zuordnen von benutzerdefinierten Namen

Sie können die Eingangs- und Ausgangssignale benennen, um die verwendeten Signale leicht zu identifizieren.

- 1. Wählen Sie das gewünschte Signal.
- 2. Tippen Sie auf das Textfeld, um einen Namen für das Signal einzugeben.
- 3. Um die Namen auf die Standardeinstellungen zurückzusetzen, tippen Sie auf Löschen.

Sie müssen einen benutzerdefinierten Namen für allgemeine Tabs angeben, um sie im Programm verfügbar zu machen (d. h. für einen **Wait-**Befehl oder den bedingten Ausdruck eines **If-**Befehls).

Die Befehle Warten und If sind in 24.10.8. Warten auf Seite 167 und 24.11.2. If auf Seite 171 beschrieben. Sie finden benannte allgemeine Tabs in der Eingabe- oder Ausgabe-Auswahl im Ausdruck-Editor.

25.5.3. E/A-Aktionen und E/A-Tabsteuerung

Eingabe- und Ausgabe-Aktionen

Verwenden Sie physikalische und digitale Feldbus-E/A zum Auslösen von Aktionen bzw. Reagieren auf den Status eines Programms.

Verfügbare Eingangs-Aktionen:

Eingang	Funktion
Start	Startet oder setzt das aktuelle Programm bei einer steigenden Flanke fort (nur in der Fernsteuerung aktiviert, siehe 30.4.5. Fernsteuerung auf Seite 267)
Stopp	Stoppt das aktuelle Programm auf steigender Flanke
Pausieren	Hält das aktuelle Programm auf steigender Flanke an
Die Schaltfläche Home greift auf den Bildschirm Roboter in Position fahren zu, in dem Sie die Auto-Schaltfläche gedrückt halten können .	Wenn der Eingang HOCH ist, befindet sich der Roboter im Freedrive (ähnlich der Freedrive-Schaltfläche). Der Eingang wird ignoriert, wenn andere Bedingungen den Freedrive nicht zulassen.

WARNUNG

Wenn der Roboter während der Start-Eingangsaktion gestoppt wird, verfährt er langsam zum ersten Wegepunkt des Programms, bevor dieses Programm ausgeführt wird. Wenn der Roboter während der Start-Eingangsaktion angehalten wird, verfährt er langsam zu der Stelle, an der er angehalten wurde, bevor dieses Programm fortgesetzt wird.

Verfügbare Ausgangs-Aktionen:

Funktion	Ausgangsstatus	Programmstatus
Low, wenn Prog. nicht aktiv	Low	Gestoppt oder pausiert

25. Register Installation

Funktion	Ausgangsstatus	Programmstatus
High, wenn Prog. nicht aktiv	High	Gestoppt oder pausiert
HIGH, wenn aktiv, Low, wenn gestoppt	Low High	Läuft Gestoppt oder pausiert
Low bei ungeplantem Stopp	Low	Programm außerplanmäßig beendet
Low bei ungeplantem Stopp, ansonsten High	Low High	Programm außerplanmäßig beendet Aktiv, gestoppt oder pausiert
Kontinuierliches Pulsieren	Wechselt zwischen HIGH und LOW	Aktiv (unterbrechen oder stoppen Sie das Programm, um den Impulsstatus zu erhalten)

HINWEIS

Ein Programm wird außerplanmäßig beendet, wenn eines der folgenden Ereignisse eintritt:

- Sicherheitsstopp
- Störung
- Verletzung
- Laufzeitausnahme

E/A-Tab-Steuerung

Geben Sie mit Hilfe der E/A-Tab-Steuerung an, ob ein Ausgang über den Tab E/A (entweder von Programmierern oder von Bedienern und Programmierern) gesteuert werden kann oder nur durch Roboterprogramme gesteuert werden darf.

25.6. Installationsvariablen

Ausführen Programm Installation	Bewegen			PROGRAMM INSTALLATION	<unbenannt>* default*</unbenannt>	Neu	öffnen Speichern		с с с с	≡
✓ Allgemein				Insta	llationsva	riable	n			
<u></u> ТСР			Variable					~* *		
Montage							VV	57 L		
E/A- Einstellung										
Variablen										
Autostart										
Sanfter Übergang										
Förderband										
Schrauben										
Werkzeug E/A										
Home										
> Sicherheit										
> Koordinatensys										
> Feldbus										
				Neu erstellen	Wert bearbe	eiten	Löschen			
Normal		Ge	schwindigkeit (100%	C	000)	Simulation	

Auf dem Installationsvariablen-Bildschirm erstellte Variablen werden Installationsvariablen genannt und können wie normale Programmvariablen verwendet werden. Installationsvariablen sind eindeutig, da sie ihren Wert beibehalten, selbst wenn ein Programm gestoppt und dann wieder gestartet wird, und wenn der Roboterarm und/oder die Control-Box aus- und dann wieder eingeschaltet wird.

Namen und Werte der Installationsvariablen werden mit der Installation gespeichert. Deshalb ist es möglich, die gleiche Variable in mehreren Programmen zu verwenden.

Installationsvariablen und deren Werte werden während der Programmausführung etwa alle 10 Minuten automatisch gespeichert, aber auch, wenn das Programm gestoppt oder unterbrochen wird.

Neue Installat	ionsvariable erstellen	
Name	Wert	
i_var_1	=	
		OK Abbrechen

Erstellen einer Variable

- 1. Tippen Sie auf **Neu erstellen**, um auf das Feld **Create new Installation variable** mit einem Namensvorschlag für die neue Variable zuzugreifen.
- 2. Tippen Sie auf das Feld **Neue Installationsvariable erstellen**, um den Namen der Variable zu ändern.
- 3. Tippen Sie auf **OK**, wenn der neue Name der Variable nicht bereits in dieser Installation verwendet wird.
- 4. Wählen Sie die Variable in der Liste aus und tippen Sie auf Wert bearbeirten, um den Wert der

Installationsvariable zu ändern.

5. Sobald die Variable konfiguriert ist, muss die Installation selbst gespeichert werden, um so die Konfiguration zu erhalten.

Variable löschen

1. Wählen Sie die Variable aus und tippen Sie auf Löschen.

Wenn ein geladenes Programm denselben Namen hat wie eine Programmvariable oder wenn eine geladene Installation denselben Namen hat wie die Installationsvariable, werden Ihnen die folgenden Optionen angeboten: Sie können entweder die Installationsvariablen desselben Namens anstelle der Programmvariablen verwenden oder die in Konflikt stehenden Variablen automatisch umbenennen lassen.

25.7. Autostart

algement	Die Änderungen werden erst nach dem Speichern der Installation wirksam.
ТСР	Programm für Autostart
Montage	Automatisches Laden eines Programms, wenn der Roboter eingeschaltet wird
E/A- Einstellung	Autostartprogramm laden:
Variablen	<autostartprogramm wählen=""></autostartprogramm>
Autostart	Autostart des o.g. Programms im Tab <i>Ausführen</i>
Sanfter Übergang	Ein < <u>Di.Eingang></u> Flanke nach Low
Förderband	
Förderband Schrauben	🏦 Wenn die Option "Auto-Initialisieren" unten ebenfalls aktiviert ist, kann sich der Roboter bereits beim Einschalten bewegen.
Förderband Schrauben Werkzeug E/A	1 Wenn die Option "Auto-Initialisieren" unten ebenfalls aktiviert ist, kann sich der Roboter bereits beim Einschalten bewegen. Dies ist nur im Modus "Fernsteuerung" verfügbar.
Förderband Schrauben Werkzeug E/A Home	 Wenn die Option "Auto-Initialisieren" unten ebenfalls aktiviert ist, kann sich der Roboter bereits beim Einschalten bewegen. Dies ist nur im Modus "Fernsteuerung" verfügbar. Auto-Initialisieren
Förderband Schrauben Werkzeug E/A Home Sicherheit	Wenn die Option "Auto-Initialisieren" unten ebenfalis aktiviert ist, kann sich der Roboter bereits beim Einschalten bewegen. Dies ist nur im Modus "Fernsteuerung" verfügbar. Auto-Initialisieren Automatisches Initialisieren des Roboters, wenn der Roboterarm ausgeschaltet wurde.
Förderband Schrauben Werkzeug E/A Home Sicherheit Coordinatensys	Wenn die Option "Auto-Initialisieren" unten ebenfalls aktiviert ist, kann sich der Roboter bereits beim Einschalten bewegen. Dies Ist nur im Modus "Fernsteuerung" verfügbar. Auto-Initialisieren Auto-Initialisieren Automatisches Initialisieren des Roboters, wenn der Roboterarm ausgeschaltet wurde.
Förderband Schrauben Werkzeug E/A Home Sicherheit Coordinatensys Feldbus	Wenn die Option "Auto-Initialisieren" unten ebenfalis aktiviert ist, kann sich der Roboter bereits beim Einschalten bewegen. Dies ist nur im Modus "Fernsteuerung" verfügbar. Auto-Initialisieren Automatisches Initialisieren des Roboters, wenn der Roboterarm ausgeschaltet wurde. Automatisches Lösen der Bremsen des Roboters Ein Dies Lösen Zumen des Roboters Ein Dies Zumen des Roboters Dies Zumen des Roboters Ein Dies Zumen des Roboters Dies Zumen des Roboters Ein Dies Zumen des Roboters Dies Zumen des Roboters Ein Dies Zumen des Roboters Dies Zumen des Roboters Ein Dies Zumen des Roboters Dies Zumen des Roboters Dies Zumen des Roboters Ein Dies Zumen des Roboters Dies Zumen des Roboters Dies Zumen des Roboters Dies Zumen des Roboters Ein Dies Zumen des Roboters Dies Zumen des R
Förderband Schrauben Werkzeug E/A Home Sicherheit Coordinatensys	Wenn die Option "Auto-Initialisieren" unten ebenfalls aktiviert ist, kann sich der Roboter bereits beim Einschalten bewegen. Dies Ist nur im Modus "Fernsteuerung" verfügbar. Auto-Initialisieren Auto-Initialisieren Automatisches Initialisieren des Roboters, wenn der Roboterarm ausgeschaltet wurde. Automatisches Lösen der Bremsen des Roboters Ein <a href="mailto: Flanke nach Low Der Roboter kann sich beim Lösen der Bremsen bewegen.

Dieser Startbildschirm enthält Einstellungen für das automatische Laden und Starten eines Standardprogramms und für die Auto-Initialisierung des Roboterarms beim Einschalten.

WARNUNG

- Sind automatisches Laden, automatisches Starten und automatisches Initialisieren aktiviert, führt der Roboter das Programm aus, sobald die Control-Box eingeschaltet ist und solange die Eingangssignale mit dem gewählten Signalpegel übereinstimmen. Der Flankenübergang für den gewählten Signalpegel ist in diesem Fall beispielsweise nicht erforderlich.
- 2. Seien Sie vorsichtig, wenn der Signalpegel auf LOW eingestellt ist. Eingangssignale sind standardmäßig LOW, sodass das Programm automatisch ausgeführt wird, ohne durch ein externes Signal ausgelöst zu werden.
- 3. Sie müssen sich im Modus **Fernsteuerung** befinden, bevor ein Programm ausgeführt werden kann, bei dem Auto-Start und Auto-Initialisieren aktiviert sind.

25.7.1. Laden eines Anlaufprogramms

Ein Standard-Programm wird geladen, nachdem die Control-Box eingeschaltet wurde. Darüber hinaus wird das Standardprogramm auch automatisch geladen, wenn die **Programm ausführen**-Anzeige (siehe 23. Der Tab "Betrieb" auf Seite 139) geöffnet wird und kein Programm geladen ist.

25.7.2. Starten eines Anlaufprogramms

Das Standardprogramm kann auf dem Bildschirm **Programm ausführen** automatisch gestartet werden. Wird das Standardprogramm geladen und der spezifizierte Flankenübergang eines externen Eingangssignals erkannt, startet das Programm automatisch.

Beim Programmstart ist das aktuelle Eingangssignal nicht definiert. Das Wählen eines Übergangs, der dem Signalpegel beim Start entspricht, startet das Programm sofort. Darüber hinaus wird die Auto-Startfunktion beim Verlassen des Bildschirms **Programm ausführen** oder beim Anklicken der Stopptaste im Dashboard solange deaktiviert, bis die Taste "Ausführen" noch einmal gedrückt wird.

25.8. Werkzeug E/A

Ausführen Programm Installation		PROGRAMM <unbenannt>*</unbenannt>	Öffnen Speichern	۰ د ا
✔ Allgemein	Einstellungen Werkzeugschnittstelle			
ТСР	Definieren Sie, wie die E/A-Werkzeugschnittstel	le angesteuert wird. Falls die Schnit	tstelle durch ein URCap gesteuert w	vird, werden
Montage	benutzerdefinierte Einstellungen überschrieben	l.		
E/A- Einstellung	Ansteuerung durch Benutzer	•		
Variablen	Analoge Eingänge - Kommunikationsschnit	Einstellungen Digitalausgänge		
Autostart Sanfter	Analoge Eingänge	Die Einstellungen der Digitalausgå montierten Werkzeugs definiert	änge des Werkzeugs werden auf Ba	sis des
Übergang Förderband	analog_in[3] Spannung	Werkzeug-Spannung	0	•
Schrauben	Kommunikationsschnittstelle	Einstellung der Werkzeugspa beschädigen, falls diese für 1.	nnung auf 24V kann angeschlossen 2V ausgelegt sind	.e Gerate
Werkzeug E/A Home	Die Kommunikationsschnittstelle am Toolflansch ermöglicht die Kommunikation mit einem Tool ohne externe Kabelführ <u>ung.</u>	O Parallelschaltung der Ausgär	nge	
> Sicherheit	Baudrate 115200 V	🔘 Standardverwendung der Au	usaänae	
 Koordinatensys Feldbus 	Parităt Kein ♥ Stoppbits Ein ♥ RX Leerzeichen 1,5 TX Leerzeichen 3,5	Digitalausgang 0 Digitalausgang 1	Endstufe (NPN) Endstufe (NPN)	•
Normal	Geschwindigkeit	100%		Simulation

25.9. Steuerung E/A-Schnittstelle

Mit der **E/A-Schnittstellensteuerung** können Sie zwischen Benutzersteuerung und URcap-Steuerung umschalten.

- 1. Tippen Sie auf den Tab "Installation" und unter "Basis-Befehle" auf Werkzeug-E/A.
- Unter Steuerung E/A-Schnittstelle wählen Sie Benutzer, um auf die Moduseinstellungen f
 ür die analogen Werkzeugeing
 änge und/oder digitalen Ausg
 änge zuzugreifen. Die Auswahl eines URCap beseitigt den Zugriff auf die Moduseinstellungen f
 ür die analogen Werkzeugeing
 änge und/oder digitalen Ausg
 änge

HINWEIS

Wenn ein URCap ein Anbaugerät steuert (z. B. einen Greifer), muss das URCap die Steuerung der E/A-Schnittstelle des Werkzeugs kontrollieren. Wählen Sie den URCap für die Steuerung der E/A-Schnittstelle des Werkzeugs aus der Liste aus.

25.10. Analoge Werkzeugeingänge

25.10.1. Kommunikationsschnittstelle für Tools

Die Kommunikationsschnittstelle für Werkzeuge (TCI) ermöglicht die Kommunikation des Roboters mit einem angebauten Tool über den Analogeingang des Werkzeugs. Dies beseitigt die Notwendigkeit für externe Verkabelung.

Sobald die Kommunikationsschnittstelle für Werkzeuge aktiviert ist, ist kein Werkzeug-Analogeingang mehr verfügbar.

25.10.2. Konfigurieren der Kommunikationsschnittstelle für Werkzeuge (TCI)

- 1. Tippen Sie auf den Tab "Installation" und unter "Basis-Befehle" auf Werkzeug-E/A.
- Wählen Sie Kommunikationsschnittstelle, um die TCI-Einstellungen zu bearbeiten. Sobald TCI aktiviert ist, ist der Analogeingang des Werkzeugs für die E/A Einstellung der Installation nicht mehr verfügbar und erscheint nicht mehr in der Eingabeliste. Der Analogeingang des Werkzeugs ist auch für Programme bei Option/Ausdruck von Warten auf nicht verfügbar.
- 3. Wählen Sie in den Dropdownmenüs unter Kommunikationsschnittstelle die erforderlichen Werte.

Alle Änderungen von Werten werden unmittelbar zum Werkzeug gesendet. Unterscheiden sich Werte von denen, die das Werkzeug tatsächlich verwendet, so erscheint eine Warnung.

25.11. Einstellungen Digitalausgänge

Die Kommunikationsschnittstelle für Werkzeuge lässt zwei digitale Ausgänge zu, die unabhängig voneinander konfiguriert werden können. In PolyScope hat jeder Pin ein Dropdown-Menü, das die Einstellung des Ausgangsmodus ermöglicht. Die folgenden Optionen sind verfügbar:

- Sinking: Dies ermöglicht es, den Kontakt als NPN- bzw. Sinking-Konfiguration einzurichten. Wenn der Ausgang ausgeschaltet ist, ermöglicht der Pin es Strom, zur Erdung zu fließen. Dies kann in Verbindung mit dem PWR-Pin zum Erstellen eines vollständigen Stromkreises verwendet werden. Siehe Kapitel 5 im Hardware-Installationshandbuch.
- Sourcing: Dies ermöglicht es, den Kontakt als PNP- bzw. Sourcing-Konfiguration einzurichten. Wenn der Ausgang aktiviert ist, bietet der Pin eine positive Spannungsquelle (konfigurierbar im Register E/A). Dies kann in Verbindung mit dem GND-Pin zum Erstellen eines vollständigen Stromkreises verwendet werden.
- Push/Pull (Drücken/Ziehen): Dies ermöglicht dem Pin die Konfiguration in einer Push/Pull-Konfiguration. Wenn der Ausgang aktiviert ist, bietet der Pin eine positive Spannungsquelle (konfigurierbar im Register E/A). Dies kann in Verbindung mit dem GND-Pin verwendet werden, um einen vollständigen Schaltkreis zu erzeugen. Wenn der Ausgang ausgeschaltet ist, lässt der Pin einen Stromfluss zur Masse zu.

25.11.1. Parallelschaltung der Ausgänge

25. Register Installation

Doppel-Pin-Strom wird als Stromquelle für das Werkzeug verwendet. Das Aktivieren von Doppel-Pin-Strom deaktiviert standardmäßige digitale Ausgänge des Werkzeugs.

25.12. Sanfter Übergang zwischen Sicherheitsmodi

Beim Umschalten zwischen Sicherheitsmodi während Ereignissen (z. B. Eingang Reduzierter Modus, Auslöseebenen für Reduzierter Modus, Schutzstopp und 3-Stellungs-Zustimmschalter) ist der Roboterarm bestrebt, einen "sanften" Übergang mit 0,4 s zu bewerkstelligen. Vorhandene Anwendungen bleiben davon unberührt, was einer "harten" Einstellung entspricht. Neue Installationsdateien erhalten standardmäßig die sanfte Einstellung.

25.12.1. Einstellungsänderungen für Beschleunigung/Verlangsamung

- 1. Tippen Sie in der Kopfzeile auf Installation.
- 2. Tippen Sie im Menü links auf Basis-Befehle und wählen Sie Sanfter Übergang.
- 3. Wählen Sie **Hart** für eine höhere Beschleunigung/Verzögerung oder wählen Sie **Sanft** für die glattere Standardübergang-Einstellung.

25.13. Home

Allgemein	Home		Roboter	
<mark>!</mark> ТСР				
Montage	Position bearbe	eiten		
E/A- Einstellung	Hierher beweg	gen		
Variablen				
Autostart	L Nullpositi	on		
Sanfter Übergang				
Förderband				
Schrauben				
Werkzeug E/A				
Home	Gelenkposition			
Sicherheit	Basis	90,00°		
Koordinatensys	Schulter	-90,00°		
Feldbus	Ellbogen	-90,00°		
	Handgelenk 1	-90,00°		
	Handgelenk 2	90,00°		
	Handgelenk 3	0,00°		

Ausgangsposition ist eine benutzerdefinierte Rückkehrposition für den Roboterarm. Einmal festgelegt, ist die Ausgangsposition beim Erstellen eines Roboterprogramms verfügbar. Sie können die Home-Position zum Festlegen einer sicheren Home-Position verwenden (siehe 22.18. Sichere Ausgangsposition auf Seite 136). Verwenden Sie die Home-Bildschirm-Tasten für folgendes:

- Position bearbeiten verändert eine Home-Position.
- Hierher bewegen bewegt den Roboterarm in die definierte Home-Position.
- Die Schaltfläche Nullposition lässt den Roboterarm in eine aufrechte Position zurückkehren.

25.13.1. Festlegen von Ausgangsposition

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie unter Allgemein den Eintrag Home.
- 3. Tippen Sie auf **Position festlegen**.
- 4. Lernen Sie den Roboter entweder über Freedrive oder die Umstellungstasten an.

25.14. Einstellungen für Förderbandverfolgung

Die Einstellungen für Förderbandverfolgung ermöglichen die Konfiguration der Bewegung von bis zu zwei separaten Fließbändern. Die Fließbandverfolgung-Einrichtung bietet Robotereinstelloptionen für den Betrieb mit absoluten bzw. relativen Encodern sowie einem linearen oder kreisförmigen Fließband.

25.14.1. Definieren eines Fließbands

- 1. Tippen Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie unter Allgemein die Förderbandverfolgung.
- Wählen Sie in den Einstellungen der Förderbandverfolgung in der Dropdownliste Conveyor 1 oder Conveyor 2.
 Sie können zum ein Elie Schand gleichmeitig factlagen.

Sie können nur ein Fließband gleichzeitig festlegen.

- 4. Wählen Sie Fließbandverfolgung aktivieren
- 5. Konfigurieren Sie die Förderband-Parameter (Abschnitt 25.14.2. Förderband-Parameter unten) und die Parameter für Förderbandsbandverfolgung (Abschnitt 25.14.3. Parameter für Förderbandsbandverfolgung unten).

25.14.2. Förderband-Parameter

Zunehmend

Encoder können an die digitalen Eingänge 8 bis 11 angeschlossen werden. Das Decodieren von digitalen Signalen läuft mit 40 kHz. Mit einem **Quadratur**-Encoder (erfordert zwei Eingänge) ist der Roboter in der Lage, die Geschwindigkeit sowie Richtung des Förderbands zu bestimmen. Ist die Richtung des Förderbands konstant, kann ein einzelner Eingang dazu verwendet werden, die Geschwindigkeit des Fließbandes über die Erkennung einer *Steigenden, Fallenden* oder *Steigenden und Fallenden* Signalflanken zu bestimmen.

Absolut

Encoder können über ein MODBUS-Signal verbunden werden. Dies erfordert eine Vorkonfigurierung des digitalen MODBUS-Ausgangsregisters (Abschnitt 25.19. MODBUS-Client-E/A-Einstellung auf Seite 237).

25.14.3. Parameter für Förderbandsbandverfolgung

Linear-Fließband

Wurde ein lineares Förderband ausgewählt, muss in der Installation unter **Funktionen** eine Linienfunktion konfiguriert werden, um die Richtung des Förderbands zu ermitteln. Achten Sie auf Genauigkeit, indem Sie die Linien-Funktion parallel zu der Richtung des Fließbands platzieren, mit einem großen Abstand zwischen den beiden Punkten, die die Linie definieren. Konfigurieren Sie die Linienfunktion so, dass Sie das Werkzeug beim Anlernen fest gegen die Seite des Fließbands stemmen. Verläuft die Richtung der Linienfunktion entgegen der Förderbandbewegung, verwenden Sie die Schaltfläche **Richtung umkehren**. Das Feld **Ticks per meter (Passmarken pro Meter)** zeigt die Anzahl der Inkremente, die der Encoder während eines Meters Fahrstrecke des Förderbands erzeugt.

Kreisförmige Fließbänder

Beim Tracking eines kreisförmigen Fließbands, muss der Mittelpunkt des Fließbands definiert sein.

- 1. Definieren Sie den Mittelpunkt im Teil **Funktionen** der Installation. Der Wert für die **Inkremente pro Umdrehung** muss der Anzahl der Inkremente entsprechen, die der Encoder während einer vollen Umdrehung des Förderbands erzeugt.
- 2. Wählen Sie das Kontrollkästchen **Werkzeug mit Fließband drehen**, damit die Werkzeugorientierung die Förderbanddrehung verfolgt.

25.15. Schraubtechnik-Einstellungen

Unter Einrichtung Schrauben finden Sie Optionen zum Konfigurieren des Roboters für die Arbeit mit einem Industrieschraubendreher oder einem Industrieschrauber. Sie können die Position des Schraubendrehers in Bezug auf den Werkzeugflansch und die elektrische Schnittstelle des Roboters einstellen.

Ausführ	en Programm Installation		PROGRAMM <unbe< b=""> INSTALLATION default</unbe<>	nannt> 🔒	Öffnen Speichern		сс сс	≡
\mathbf{v}	Allgemein	Schrauben						
	ТСР	Einstellungen für Schrau	ubanwendung					
	Montage	Verwenden Sie das Register "TC	CP" um die Spitze des Schraubers	als TCP zu				
	E/A- Einstellung	definieren und die korrekte Orie Grafik auf der Rechten Seite die	entierung einzustellen. Nutzen Sie Ises Registers.	hier als Hilfe die				
	Variablen	Auswählen 🔻						
	Autostart					× ×		
	Sanfter Übergang	E/A Signale	Eingang	Ausgang		'Z		
	Förderband	Schnittstelle	OK	Programm-Aus	swahl- 1	Start		
	Schrauben	Alle	Auswählen 🔻	Auswählen	•	Auswählen	•	
	Werkzeug E/A Home		Nicht OK	Programm-Aus	swahl- 2	Verzögerung Programmauswahl		
	Sicherheit		Auswählen 🔻	Auswählen	•	1.0	s	
>	Koordinatensys		Bereit	Programm-Aus	swahl- 3			
<u> </u>	-eldbus		Auswählen 🔻	Auswählen	•			
ŕ				Programm-Aus	swahl- 4			
				Auswählen	•			
0	Normal	Geschwindig	gkeit 100	D%	\mathbf{O}	Simu	ation	

25.15.1. Konfiguration eines Schraubendrehers

- 1. Klicken Sie in der Kopfzeile auf Installation.
- 2. Wählen Sie unter Allgemein die Option **Schrauben** aus oder tippen Sie unter Allgemein auf **TCP** und erstellen Sie Ihren eigenen TCP für das Schrauben.
- 3. Unter **Eingang** und **Ausgang** konfigurieren Sie die E/A für Ihren Schraubendreher. Über die Liste **Schnittstelle** können Sie die Arten der unter Eingang und Ausgang angezeigten E/A filtern.
- 4. Wählen Sie unter Start den E/A, der den Schraubvorgang startet.

Sie können in jeder Programmauswahlliste unter Ausgang eine Ganzzahlausgabe wählen, um die Programmauswahl (siehe 24.12.8. Schraubtechnik auf Seite 193) auf ein Zahlenfeld umzuschalten.

25.15.2. Konfiguration der Position des Schraubendrehers

- 1. Wählen Sie im Dropdown-Menü unter **Einstellungen für Schraubanwendung** einen zuvor erstellten TCP aus (siehe 25.2. TCP-Konfiguration auf Seite 207), in dem Position und Ausrichtung wie folgt festgelegt werden:
 - Konfigurieren Sie die Position so, dass Sie beim Kontakt mit der Schraube auf Spitze des Schraubendrehers liegt.
 - Konfigurieren Sie die Ausrichtung so, dass die positive Z-Richtung entlang der festzuziehenden Schrauben ausgerichtet ist.

Wenn Sie prüfen wollen, ob die X-, Y- und Z-Koordinaten des ausgewählten TCP auf Spitze oder Sockel des Werkzeugs liegen, können Sie die Koordinaten anzeigen lassen. Der Programmknoten Schrauben (siehe 24.12.8. Schraubtechnik auf Seite 193) verwendet zur Verfolgung der Schraube und zum Berechnen von Entfernungen die positive Z-Richtung.

Die folgende Tabelle zeigt typische Ausrichtungswerte (in Rotationsvektor-Schreibweise [rad]).

Schraubachse parallel zu negativer Y-Richtung des Roboter-Werkzeugflanschs	Orientierung RX: 1.5708 rad RY: 0.0000 rad RZ: 0.0000 rad
Schraubachse parallel zu positiver Y-Richtung des Roboter-Werkzeugflanschs	Orientierung RX: -1.5708 rad RY: 0.0000 rad RZ: 0.0000 rad
Schraubachse parallel zu positiver X-Richtung des Roboter-Werkzeugflanschs	Orientierung RX: 0.0000 rad RY: 1.5708 rad RZ: 0.0000 rad
Schraubachse parallel zu negativer X-Richtung des Roboter-Werkzeugflanschs	Orientierung RX: 0.0000 rad RY: -1.5708 rad RZ: 0.0000 rad
Schraubachse parallel zu positiver Z-Richtung des Roboter-Werkzeugflanschs	Orientierung • RX: 0.0000 rad • RY: 0.0000 rad • RZ ⁻ 0.0000 rad

225

25.15.3. Konfiguration der Schnittstelle des Schraubendrehers

- 1. Ändern Sie über das Dropdown-Menü **Schnittstelle** oben im Bildschirm die angezeigten Inhalte auf Basis des Signaltyps.
- 2. Konfigurieren Sie unter Eingang die Signale, die der Roboter vom Schraubendreher empfängt:
 - OK: HIGH, wenn die Verschraubung erfolgreich beendet wurde. Wenn nicht ausgewählt, ist diese Bedingung im Programmknoten Schrauben nicht verfügbar
 - NOK: HIGH, wenn die Verschraubung fehlerhaft beendet wurde. Wenn nicht ausgewählt, ist diese Bedingung im Programmknoten Schrauben nicht verfügbar
 - Bereit: HIGH, wenn der Schraubendreher einsatzbereit ist. Wenn nicht ausgewählt, wird diese Bedingung nicht geprüft
- 3. Konfigurieren Sie unter Ausgang die Signale, die der Roboter an den Schraubendreher sendet:
 - Start: startet das Festziehen oder Lösen einer Schraube nur in Abhängigkeit von der Verdrahtung.
 - Programmauswahl: es können eine Ganzzahl oder bis zu vier Binärsignale ausgewählt werden, um verschiedene im Schraubendreher abgelegte Verschraubungskonfigurationen zu aktivieren
 - Verzögerung bei Programmauswahl: Wartezeit nach Schraubendreher-Programmwechsel, damit dieses sicher aktiviert ist

25.16. Sicherheit

Siehe Kapitel 22. Sicherheitskonfiguration auf Seite 119.

25.17. Koordinatensys

Ausführen Programm Installation	Hewegen E/A Protokoll	PROGRAMM <unbenannt>*</unbenannt> installation default*	Neu Öffnen Speichern	÷ د د ا
Ausühren Programm Installation Allgemein Sicherheit Koordinatensys Punkt Ebene Feldbus	 Reegen EA Probability Conclinatensysteme Basis Werkzeug 	Basis		+
Normal	Geschwindigi	keit - 100%	Bearb	eiten Hierher bewegen

Ein **Koordinatensystem** stellt ein Objekt dar, das durch eine sechsdimensionale Pose (Position und Orientierung) relativ zur Roboterbasis definiert ist. Sie können ein Koordinatensystem für zukünftige Referenzen benennen.

Einige Unterkomponenten eines Roboterprogramms bestehen aus Bewegungen, die sich nicht auf die Basis des Roboterarms beziehen, sondern relativ zu bestimmten Punkten auszuführen sind. Dabei kann es sich um Tische, andere Maschinen, Werkstücke, Förderbänder, Paletten, Kamerasysteme, Rohteile oder Begrenzungen handeln, die in der Umgebung des Roboterarms vorhanden sind.

Der Roboter verfügt über zwei vordefinierte Koordinatensysteme, die unten aufgeführt sind, mit Posen, die durch die Konfiguration des Roboterarms selbst definiert sind:

- Das Basis-Koordinatensystem hat seinen Ursprung im Zentrum der Roboterbasis (siehe Abbildung 13.1).
- Das Werkzeug-Koordinatensystem hat seinen Ursprung im Zentrum des aktuellen TCP (siehe Abbildung 13.2).

Verwenden Sie das Punkt-, Linien-und/oder Ebenen-Koordinatensystem, um eine Pose zu definieren.

Benutzerdefinierte Koordinatensysteme werden über eine Methode positioniert, die die aktuelle Pose des TCP im Arbeitsbereich verwendet. Der Benutzer kann also mithilfe des Freedrive-Modus oder "Jogging" den Roboter in die gewünschte Position bringen.

Die Auswahl eines Koordinatensystems hängt von der Art des verwendeten Objekts und den Genauigkeitsanforderungen ab. Verwenden Sie nach Möglichkeit das Linien- und das Ebenen-Koordinatensystem, da diese auf mehr Eingabepunkten basieren. Mehr Eingabepunkte bedeuten höhere Präzision.

Um die Richtung eines Linear-Förderbands genau definieren zu können, definieren Sie zwei Punkte einer Linienfunktion mit möglichst hohem physikalischen Abstand. Die Punktfunktion kann auch verwendet werden, um ein Linear-Förderband zu definieren, allerdings muss der Anwender den TCP in die Richtung der Bandbewegung weisen.

Werden mehr Punkte für die Definition von Position und Lage z. B. eines Tisches verwendet, bedeutet dies, dass die Ausrichtung eher auf Positionen anstatt auf der Ausrichtung eines einzelnen TCP

basiert. Eine einzelne TCP-Ausrichtung ist mit hoher Präzision schwerer zu konfigurieren. Weitere Informationen zum Hinzufügen von Koordinatensystemen finden Sie unter Abschnitt unten, auf der nächsten Seite und 25.17.5. Funktion Ebene auf Seite 231.

25.17.1. Verwenden einer Funktion

Wurde ein Koordinatensystem bei der Installation definiert, können Sie diesem Roboterbewegungen aus dem Roboterprogramm zuweisen (z. B. **FahreAchse**, **FahreLinear** und **FahreP** Befehle) (siehe Abschnitt 24.10.1. Bewegen auf Seite 153).

Dies ermöglicht eine einfache Anpassung eines Roboterprogramms (z. B. bei mehreren Roboterstationen oder wenn ein Objekt während der Programmlaufzeit verschoben oder permanent in der Szene verschoben wird). Durch einfaches Anpassen der Funktion (des "Koordinatensystems") eines Objekts, werden alle Bewegungen innerhalb des Programms relativ mit dem Objekt verschoben. Weitere Beispiele finden Sie unter Abschnitte 25.17.6. Beispiel: Manuelle Anpassung einer Funktion zur Anpassung eines Programms auf Seite 232 und 25.17.7. Beispiel: Dynamisches Aktualisieren einer Funktion auf Seite 233. Ist eine Funktion als Bezug ausgewählt, werden die Tasten für die Bewegung des Werkzeugs für Translationen und Rotationen im Bezugs-Koordinatensystem angewendet (siehe 26.3. Werkzeugposition auf Seite 245 und 26.1. Bewegung des Werkzeuges auf Seite 243), ebenso wie die aktuelle Anzeige der TCP-Koordinaten. Wenn z. B. ein Tisch als eine Funktion definiert und als Referenz im Tab "Move" ausgewählt ist, bewegen die Pfeile (nach oben/unten, links/rechts, vorwärts/rückwärts) den Roboter in diese Richtungen relativ zum Tisch. Zusätzlich befinden sich die TCP-Koordinaten im Rahmen des Tisches.

- In der Funktionsstruktur können Sie einen Punkt, eine Linie oder Ebene durch Antippen der Bleistift-Taste umbenennen.
- In der Funktionsstruktur können Sie einen Punkt, eine Linie oder Ebene durch Antippen der Löschen-Taste entfernen.

25.17.2. Verwenden von: Roboter hierher bewegen

Drücken Sie die Schaltfläche **Hierher bewegen**, um den Roboterarm in Richtung des Bezugs-Koordinatensystems zu bewegen. Am Ende dieser Bewegung stimmen die Koordinatensysteme der Funktion und des TCP überein.

Bewegen ist hier deaktiviert, wenn der Roboterarm die Funktion nicht erreichen kann.

25.17.3. Punkt-Funktion

Die Punkt-Funktion definiert Sicherheitsgrenzen oder eine globalen Grundposition des Roboterarms. Die Punkt-Funktion Pose wird als die Position und Ausrichtung des TCP definiert.

Neuen Punkt hinzufügen

- 1. Tippen Sie unter "Installation" auf Koordinatensysteme.
- 2. Tippen Sie unter "Koordinatensysteme" auf **Punkt**.

25.17.4. Linien-Funktion

Die Linienfunktion definiert Linien, denen der Roboter folgen muss. (z. B. bei Fließband-Tracking). Eine Linie / ist als eine Achse zwischen zwei Punkt-Funktionen p1 und p2 definiert, wie in Abbildung 13.3 gezeigt.

Hinzufügen einer Linie

- 1. Tippen Sie unter "Installation" auf Koordinatensysteme.
- 2. Tippen Sie unter "Koordinatensysteme" auf Linie.

13.3: Definition of the line feature

In Abbildung 13.3 ist die Achse vom ersten zum zweiten Punkt gerichtet und beschreibt die y-Achse des Koordinatensystems der Linienfunktion. Die z-Achse wird durch die Orientierung der z-Achse von p1 definiert und steht senkrecht auf der Linie. Die Position des Koordinatensystems der Linie ist dieselbe wie die Position von p1.

Ausführen Programm		PROGRAMM <unbenannt>* 🛄 🛅 🚺</unbenannt> INSTALLATION default* _{Neu} öffnen spei	
 Allgemein Sicherheit 	Koordinatensysteme Basis Werkzeug	✓ Linie	<u>n</u> Löschen
Koordinatensys Punkt Linie Ebene	 Inie Punkt_1 Punkt_2 		+
> Feldbus			
Normal	Geschwindigi	xeit 100%	O Simulation

R

UNIVERSAL ROBOTS

25.17.5. Funktion Ebene

Wählen Sie die Ebenenfunktion, wenn ein Koordinatensystem mit hoher Präzision erforderlich ist, z. B. bei der Arbeit mit einem Sichtsystem oder bei Bewegungen relativ zu einem Tisch.

Hinzufügen einer Ebene

- 1. Tippen Sie unter "Installation" auf Koordinatensysteme.
- 2. Tippen Sie unter "Koordinatensysteme" auf Ebene.

Anlernen (Teaching) einer Ebene

Wenn Sie die Schaltfläche Ebene zum Erstellen einer neuen Ebene antippen, führt Sie der Assistent auf dem Bildschirm durch das Erstellen einer Ebene.

- 1. Wählen Sie Origo
- 2. Bewegen Sie den Roboter, um die Richtung der positiven X-Achse der Ebene zu definieren
- 3. Bewegen Sie den Roboter, um die Richtung der positiven Y-Achse der Ebene zu definieren

Die Ebene wird mit der Regel der rechten Hand definiert, sodass die Z-Achse das Kreuzprodukt der X-Achse und der Y-Achse ist, wie unten dargestellt.

HINWEIS

Sie können die Ebene erneut in entgegengesetzter Richtung der X-Achse anlernen, wenn Sie wollen, dass die Ebene in entgegengesetzter Richtung normal ist.

Ändern Sie eine vorhandene Ebene durch die Auswahl einer Ebene und drücken Sie "Ebene ändern". Damit verwenden Sie den gleichen Leitfaden wie für das Anlernen einer neuen Ebene.

25.17.6. Beispiel: Manuelle Anpassung einer Funktion zur Anpassung eines Programms

Stellen Sie sich eine Anwendung vor, in welcher mehrere Teile eines Roboterprogramms relativ zu einem Tisch definiert sind. In Abbildung 13.4 wird dies als Bewegung der Wegpunkte wp1 bis wp4 dargestellt.

```
Robot Program

MoveJ

S1

MoveL # Feature: P1_var

wp1

wp2

wp3

wp4
```


13.4: Einfaches Programm mit vier Wegepunkten in Relation zu einer Funktionsebene, manuell aktualisiert durch Ändern der Funktion

Die Anwendung erfordert, dass das Programm für mehrere Roboterinstallationen verwendet werden soll, in welchen nur die Positionen des Tisches leicht variieren. Die Bewegung relativ zum Tisch ist identisch. Durch Definition der Tischposition als Funktion *PI* in der Installation kann das Programm mit einem FahreLinear-Befehl, welcher relativ zu Ebene konfiguriert ist, einfach für weitere Roboter angewendet werden, indem lediglich die Installation mit der tatsächlichen Position des Tisches aktualisiert wird.

Das Konzept gilt für eine beliebige Anzahl von Funktionen einer Applikation, um ein flexibles Programm zu erhalten, welches die gleiche Aufgabe auf mehreren Robotern ausführen kann. Und dies selbst dann, wenn andere Bereiche der Arbeitsfläche zwischen den Installationen variieren.

25.17.7. Beispiel: Dynamisches Aktualisieren einer Funktion

Stellen Sie sich eine ähnliche Anwendung vor, in welcher der Roboter seinen TCP ebenfalls in einem bestimmten Muster über den Tisch bewegt, um eine spezifische Aufgabe zu lösen (wie in Abbildung 13.5 gezeigt).


```
Robot Program

MoveJ

wp1

y = 0.01

o = p[0,y,0,0,0,0]

P1_var = pose_trans(P1_var, o)

MoveL # Feature: P1_var

wp1

wp2

wp3

wp4
```



```
Robot Program
MoveJ
S1
if (digital_input[0]) then
P1_var = P1
else
P1_var = P2
MoveL # Feature: P1_var
wp1
wp2
wp3
wp4
```


13.7: Umschalten von einer Ebenenfunktion zu einer anderen

Die Bewegung relativ zu *P1* wird mehrmals wiederholt, jeweils durch einen Offset *o*. In diesem Beispiel ist der Offset auf 10 cm in Y-Richtung festgelegt (siehe Abbildung 13.6, Offsets *O1* und *O2*). Dies kann mit den Script-Funktionen *pose_add()* oder *pose_trans()* erreicht werden, mit denen die Variable beeinflusst wird. Anstelle eines Offset ist es auch möglich, auf eine andere Funktion zu wechseln. Dies wird im Beispiel unten gezeigt (siehe Abbildung 13.7), in dem die Bezugsfunktion für den *FahreLinear*-Befehl *P1_var* zwischen zwei Ebenen *P1* und *P2* wechseln kann.

25.17.8. Funktionsbearbeitung

Die Funktionsbearbeitung ist eine alternative Möglichkeit, Funktionen zu Ihrer Installation hinzuzufügen und/oder vorhandene Funktionen zu bearbeiten.

		program <unnamed>* [installation default* _N</unnamed>	La Carlo Copen Save	сс сс
 General Safety Eestures 	Features Base Tool	Point_1		<u> Î</u> Delete
Point Line	• Point_1			+
 Plane Fieldbus 				
				•
			Edit Move here	Teach this point
Normal	Spec	ed 💶 100%		Simulation

Verwenden Sie "Bearbeiten", um Funktionen zu platzieren und zu verschieben, ohne den Roboterarm zu bewegen, so dass die Funktion außerhalb der Reichweite des Roboterarms platziert werden kann.

Einen Punkt bearbeiten

Sie können einen definierten Punkt oder einen nicht definierten Punkt bearbeiten. Durch Bearbeiten eines undefinierten Punktes wird dieser definiert.

- 1. Tippen Sie unter "Installation" auf Funktionen.
- 2. Klicken Sie unter "Funktionen" auf **Punkt**, um einen Punkt zu Ihrer Programmstruktur hinzuzufügen.
- 3. Tippen Sie auf **Bearbeiten**, um den Bearbeitungsbildschirm aufzurufen und Änderungen an der Position und Rotation des Punktes vorzunehmen.

Eine Linie bearbeiten

Die Linie erscheint als zwei Punkte in Ihrer Programmstruktur. Sie müssen jeden Punkt definieren.

- 1. Tippen Sie unter "Installation" auf **Funktionen**.
- 2. Klicken Sie unter "Funktion" auf Linie, um eine Linie zu Ihrer Programmstruktur hinzuzufügen.
- 3. Die Linie besteht aus zwei Punkten:
 - Tippen Sie auf einen Punkt, um die entsprechenden Koordinaten zu bearbeiten. Tippen Sie dann auf den anderen Linienpunkt, um diese Koordinaten zu bearbeiten.

Eine Ebene bearbeiten

- 1. Tippen Sie unter "Installation" auf Funktionen.
- 2. Klicken Sie unter "Funktion" auf **Ebene**, um eine Ebene zu Ihrer Programmstruktur hinzuzufügen.
- 3. Tippen Sie auf **Bearbeiten**, um den Bearbeitungsbildschirm aufzurufen und Änderungen an der Position und Rotation der Ebene vorzunehmen.

25.18. Feldbus

Hier können Sie das Netzwerkprotokoll für Industrierechner festlegen, das für die verteilte Echtzeitsteuerung durch PolyScope eingesetzt werden soll: MODBUS, Ethernet/IP und PROFINET.

25.19. MODBUS-Client-E/A-Einstellung

Ausführen Programm	INSTALLATION PROGRAMM Cunbenannt>* Image: Constraint of the second secon	° ° ≡
> Allgemein	MODBUS-Client-E/A-Einstellung	
> Sicherheit		· · · · · ·
> Koordinatensys	MODBUS-Einheit hinzufügen	
✓ Feldbus		
MODBUS	IP-Adresse 10.0.0.2 🔲 Sequenzieller Modus	Einheit löschen
Ethernet/IP		
PROFINET	Typ Adresse Name Wert	
	Registerausgang V 18 MODBUS_1 0	Löschen
	Frequenz [Hz] 10 🔻 MODBUS-Slave-Adresse 255	
	Antwortzeit [ms]:, Timeout: 0, Anfrage fehlgeschlagen: 0, Avg. resp. f:	
	Digitaler Eingang 260 MODBUS_2	Löschen
	Frequenz [Hz] 10 V MODBUS-Slave-Adresse 255	
	Antwortzeit [ms]:, Timeout: 0, Anfrage fehlgeschlagen: 0, Avg, resp, f;	
	Neues Signal hinzufügen	
		~
	Erweiterte Optionen anzeigen	
Normal	Geschwindigkeit 💶 100% 🕞 🛐 🗖	Simulation

Hier können die Signale des MODBUS-Client (Master) eingestellt werden. Verbindungen zu MODBUS-Servern (oder Slaves) auf angegebenen IP-Adressen können mit Eingangs-/Ausgangssignalen (Register oder digital) erstellt werden. Jedes Signal hat einen einmaligen Namen, damit es in Programmen verwendet werden kann.

25.19.1. Aktualisieren

Drücken Sie auf diese Schaltfläche, um alle MODBUS-Verbindungen zu aktualisieren. Das Aktualisieren trennt alle Modbus-Einheiten und verbindet sie erneut. Alle Statistik wird gelöscht.

25.19.2. Einheit hinzufügen

Drücken Sie auf diese Schaltfläche, um eine neue MODBUS-Einheit hinzuzufügen.

25.19.3. Einheit löschen

Drücken Sie auf diese Schaltfläche, um die MODBUS-Einheit und alle Signale dieser Einheit zu löschen.

25.19.4. Einstellung IP-Adresse Einheit

Hier wird die IP-Adresse der MODBUS-Einheit angezeigt. Drücken Sie auf die Schaltfläche, um diese zu ändern.

25.19.5. Sequenzieller Modus

Nur verfügbar, wenn "Erweiterte Optionen anzeigen" (siehe 25.19.13. Erweiterte Optionen anzeigen auf Seite 240) ausgewählt ist. Dieses Kontrollkästchen zwingt den Modbus-Client auf eine Antwort zu warten, bevor er die nächste Anforderung sendet. Dieser Modus ist für einige Feldbus-Einheiten erforderlich. Das Aktivieren dieser Option kann bei Mehrfach-Signalen hilfreich sein und steigende Anfragehäufigkeit resultiert in Signaltrennungen.

Beachten Sie, dass die tatsächliche Signalfrequenz möglicherweise niedriger als angefordert sein könnte, wenn mehrere Signale im sequenziellen Modus definiert sind. Die tatsächliche Signalfrequenz kann in Signalstatistiken festgestellt werden (siehe Abschnitt 25.19.14. Erweiterte Optionen auf Seite 240). Die Signalanzeige wird gelb, wenn die tatsächliche Signalfrequenz weniger als die Hälfte des aus der Dropdown-Liste **Frequenz** ausgewählten Wertes beträgt.

25.19.6. Signal hinzufügen

Drücken Sie auf diese Schaltfläche, um der entsprechenden MODBUS-Einheit ein Signal hinzuzufügen.

25.19.7. Signal löschen

Drücken Sie auf diese Schaltfläche, um ein MODBUS-Signal der entsprechenden MODBUS-Einheit zu löschen.

25.19.8. Signaltyp einstellen

Verwenden Sie dieses Auswahlmenü, um den Signaltyp auszuwählen. Die folgenden Typen stehen zur Verfügung:

Digitaleingang
Ein digitaler Eingang (Coil) ist eine Ein-Bit-Menge, die von der MODBUS-Einheit aus dem Coil abgelesen wird und im Adressfeld des Signals angegeben ist. Funktionscode 0x02 (diskrete Ausgänge lesen) wird eingesetzt.

Digitalausgang

Ein digitaler Ausgang (Coil) ist eine Ein-Bit-Menge, die auf HIGH oder LOW eingestellt werden kann. Bevor der Wert dieses Ausgangs durch den Benutzer eingestellt wurde, wird der Wert von der dezentralen MODBUS-Einheit abgelesen. Das bedeutet, dass der Funktionscode 0x01 (Read Coils) verwendet wird. Wenn der Ausgang entweder durch ein Roboterprogramm oder durch Betätigung der Schaltfläche **Signalwert bestimmen** festgelegt wurde, wird ab diesem Zeitpunkt der Funktionscode 0x05 (Write Single Coil) eingesetzt.

Registereingang

Ein Registereingang ist eine 16-Bit-Menge, die von der Adresse abgelesen wird, die im Adressfeld angegeben ist. Der Funktionscode 0x04 (Read Input Registers) wird eingesetzt.

Registerausgang

Ein Registerausgang ist eine 16-Bit-Menge, die durch den Benutzer eingestellt werden kann. Bevor der Wert dieses Registers eingestellt wurde, wird der Wert von der dezentralen MODBUS-Einheit abgelesen. Das bedeutet, dass der Funktionscode 0x03 (Read Holding Registers) verwendet wird. Wenn der Ausgang entweder durch ein Roboterprogramm oder durch Betätigung der Schaltfläche **Signalwert bestimmen** festgelegt wurde, wird der Funktionscode 0x06 (Einzelnes Register schreiben) eingesetzt, um den Wert auf der dezentralen MODBUS-Einheit festzulegen.

25.19.9. Signaladresse einstellen

Dieses Feld zeigt die Adresse des dezentralen MODBUS-Servers. Verwenden Sie die Bildschirmtastatur, um eine andere Adresse auszuwählen. Gültige Adressen hängen von Hersteller und Konfiguration der dezentralen MODBUS-Einheit ab.

25.19.10. Signalname einstellen

Durch Verwendung der Bildschirmtastatur kann der Benutzer das Signal benennen. Dieser Name wird verwendet, wenn das Signal in Programmen eingesetzt wird.

25.19.11. Signalwert

Hier wird der Istwert des Signals angezeigt. Bei Registersignalen wird der Wert als vorzeichenlose ganze Zahl ausgedrückt. Bei Ausgangssignalen kann der gewünschte Signalwert mit der Schaltfläche eingestellt werden. Für den Registerausgang muss der an die Einheit zu schreibende Wert als vorzeichenlose ganze Zahl bereitgestellt werden.

25.19.12. Status Signalkonnektivität

Dieses Symbol zeigt an, ob das Signal korrekt gelesen/geschrieben (grün) werden kann oder ob die Einheit unerwartet antwortet oder nicht erreichbar ist (grau). Wird eine MODBUS-Ausnahmeantwort empfangen, wird der Antwortcode angezeigt. Die MODBUS-TCP-Ausnahmeantworten lauten wie folgt:

E1

UNZULÄSSIGE FUNKTION (0x01) Der in der Abfrage empfangene Funktionscode ist keine zulässige Aktion für den Server (oder Slave).

E2

UNZULÄSSIGE DATENADRESSE (0x02) Der in der Abfrage empfangene Funktionscode ist keine zulässige Aktion für den Server (oder Slave). Prüfen Sie, ob die eingegebenen Signaladressen mit der Einstellung des dezentralen MODBUS-Servers übereinstimmen.

E3

UNZULÄSSIGER DATENWERT (0x03) Ein im Abfragedatenfeld enthaltener Wert ist für den Server (oder Slave) unzulässig. Prüfen Sie, ob der eingegebene Signalwert für die angegebenen Adressen auf dem dezentralen MODBUS-Server gültig ist.

E4

FEHLER IM SLAVE-GERÄT (0x04) Ein nicht wiederherstellbarer Fehler ist aufgetreten, während der Server (oder Slave) versucht hat, die angeforderte Aktion auszuführen.

E5

BESTÄTIGEN (0x05) Spezielle Verwendung in Verbindung mit Programmierbefehlen, die an die dezentrale MODBUS-Einheit gesendet werden.

E6

SLAVE-GERÄT MOMENTAN NICHT VERFÜGBAR (0x06) Spezielle Verwendung in Verbindung mit Programmierbefehlen, die an die dezentrale MODBUS-Einheit gesendet werden; der Slave (Server) kann im Moment nicht antworten.

25.19.13. Erweiterte Optionen anzeigen

Dieses Kontrollkästchen zeigt die erweiterten Optionen für jedes Signal bzw. blendet diese aus.

25.19.14. Erweiterte Optionen

Update-Häufigkeit

Mit diesem Menü kann die Aktualisierungsfrequenz des Signals geändert werden. Dies gilt für die Frequenz, mit der Anfragen an die dezentrale MODBUS-Einheit geschickt werden, um den Signalwert entweder zu lesen oder zu schreiben. Ist die Frequenz auf 0 gesetzt, so werden Modbus-Anfragen auf Anforderung unter Verwendung von *Modbus_erhalte_Signal_Status*, *Modbus_setze_Ausgangs-_Register* und *Modbus_setze_Ausgangs-_Signal-Scriptfunktionen* angestoßen.

Slave-Adresse

Dieses Textfeld kann verwendet werden, um eine spezifische Slave-Adresse für Anfragen im Zusammenhang mit einem spezifischen Signal einzustellen. Der Wert muss im Bereich von 0-255 liegen. Der Standardwert ist 255. Wenn Sie diesen Wert ändern, wird empfohlen, das Handbuch des dezentralen MODUS-Geräts hinzuzuziehen, um seine Funktion zu prüfen, wenn die Slave-Adresse geändert wird.

Zählvariable neu verbinden

Anzahl der beendeten und neu hergestellten TCP-Verbindungen

Verbindungsstatus

TCP-Verbindungsstatus

Antwortzeit [ms]

Zeitspanne zwischen gesendeter Modbus-Anforderung und empfangener Antwort wird nur bei aktiver Kommunikation aktualisiert.

Modbus-Paket-Fehler

Anzahl der empfangenen Pakete, die Fehler enthielten (z. B. ungültige Länge, fehlende Daten, TCP-Socket-Fehler).

Timeout

Anzahl der Modbus-Anfragen ohne Antwort.

Anfrage fehlgeschlagen

Anzahl der Pakete, die aufgrund eines ungültigen Socket-Status nicht gesendet werden konnten.

IstFrequenz

Die durchschnittliche Häufigkeit von Client (Master)-Signal-Status-Updates. Dieser Wert wird jedes Mal neu berechnet, wenn das Signal eine Antwort vom Server (oder Slave) erhält.

Alle Zähler zählen bis 65535 und springen dann wieder auf 0.

25.20. Ethernet/IP

EtherNet/IP ist ein Netzwerkprotokoll, das die Verbindung des Roboters mit einem industriellen EtherNet/IP-Scanner-Gerät ermöglicht.

Wenn die Verbindung aktiviert ist, können Sie die Aktion auswählen, die auftritt, wenn ein Programm die Verbindung zum EtherNet/IP-Scanner-Gerät verliert.

Die verfügbaren Optionen sind:

Keine

PolyScope ignoriert die unterbrochene EtherNet/IP Verbindung und setzt das Programm fort.

Pausieren

PolyScope pausiert das aktuelle Programm. Das Programm wird an der unterbrochenen Stelle wieder fortgesetzt.

Stopp

PolyScope hält das aktuelle Programm an.

25.21. PROFINET

PROFINET ist ein Netzwerkprotokoll, das die Verbindung des Roboters mit einem industriellen PROFINET IO-Controller ermöglicht.

Wenn die Verbindung aktiviert ist, können Sie die Aktion auswählen, die auftritt, wenn ein Programm die Verbindung zum PROFINET IO-Controller verliert.

Die verfügbaren Optionen sind:

Keine

PolyScope ignoriert die unterbrochene PROFINET-Verbindung und setzt das Programm fort.

Pausieren

PolyScope pausiert das aktuelle Programm. Das Programm wird an der unterbrochenen Stelle wieder fortgesetzt.

Stopp

PolyScope hält das aktuelle Programm an.

26. Register Move

In diesem Bildschirm können Sie den Roboterarm direkt bewegen, entweder durch Versatz/Drehen des Roboterwerkzeugs oder durch das Bewegen der einzelnen Robotergelenke.

26.1. Bewegung des Werkzeuges

Halten Sie einen der **Bewegung des Werkzeuges** Pfeile gedrückt, um den Roboterarm in eine bestimmte Richtung zu bewegen.

- Die (oberen) **Bewegungspfeile** fahren die Werkzeugspitze des Roboters in die angegebene Richtung.
- Mit den (unteren) Drehungspfeilen wird die Ausrichtung des Roboterwerkzeugs in die angegebene Richtung gelenkt. Der Drehpunkt ist der Werkzeugmittelpunkt (TCP), d. h.der Punkt am Ende des Roboterarms, der einen charakteristischen Punkt des Roboterwerkzeugs darstellt. Der TCP wird kleine blaue Kugel dargestellt.

26.2. Roboter

Wenn sich die aktuelle Position des Roboter-TCP einer Sicherheits- oder Auslöseebene nähert oder sich die Ausrichtung des Roboterwerkzeugs nah an einer Werkzeugausrichtungsgrenze befindet (siehe 22.11. Ebenen auf Seite 125), wird eine 3D-Darstellung der angenäherten Bewegungsgrenze angezeigt. Sie können auch mit dem Finger über die Roboterarm-Grafik fahren, um die Perspektive zu ändern.

UNIVERSAL ROBOTS

Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Normal-Ebene steht, was angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöserebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil angezeigt, der auf die Seite der Ebene zeigt, auf der die Grenzen des **Normal**-Modus (siehe 22.8. Sicherheitsmodi auf Seite 124) aktiv sind. Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor).

Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Wird eine Bewegungsgrenze durch den TCP überschritten oder ist kurz vor der Überschreitung, wird die Darstellung der Bewegungsgrenze rot.

26.2.1. Koordinatensystem

Unter **Funktion** können Sie festlegen, wie der Roboterarm in Relation zu den Funktionen **Ansicht**, **Basis** oder **Werkzeug** gesteuert werden soll. Um das beste Gefühl für die Steuerung des Roboterarms zu bekommen, wählen Sie die Funktion **Ansicht**. Drehen Sie den Blickwinkel der 3D-Darstellung dann mit den **Drehpfeilen**, bis sie mit der Perspektive auf den echten Roboterarm übereinstimmt.

26.2.2. Aktive TCP

Rechts im Feld **Roboter** steht unter **Aktiver TCP** der Name des gegenwärtig aktiven Werkzeugmittelpunkts (TCP).

26.2.3. Home

Mit der Schaltfläche Home wird der Bildschirm Roboter in Position fahren aufgerufen. Halten Sie die Schaltfläche Auto gedrückt (siehe 23.4.2. Roboter fahren zu: auf Seite 141), um den Roboter in eine zuvor unter Installation (siehe 25.13.1. Festlegen von Ausgangsposition auf Seite 222) definierte Position zu verfahren. Die Standardeinstellung der Home-Schaltfläche lässt den Roboterarm in eine aufrechte Position zurückkehren (siehe 25.13. Home auf Seite 222).

26.2.4. Freedrive

Die auf dem Bildschirm angezeigte Schaltfläche **Freedrive** ermöglicht es, dass der Roboterarm in die gewünschten Positionen/Posen gezogen werden kann.

26.2.5. Ausrichten

Die Ausrichten-Schaltfläche ermöglicht es, die Z-Achse des aktiven TCP hin zu einer ausgewählten Funktion auszurichten.

26.3. Werkzeugposition

Die Textfelder zeigen die vollständigen Koordinatenwerte des TCP relativ zur ausgewählten Funktion an. Sie können mehrere benannte TCPs konfigurieren (siehe 25.2. TCP-Konfiguration auf Seite 207). Sie können auch auf **Pose bearbeiten** klicken, um den Bildschirm **Poseneditor** aufzurufen.

26.4. Gelenkposition

Im Feld **Gelenkposition** können Sie einzelne Gelenke direkt ansteuern. Für jedes Gelenk gilt ein Standard-Gelenkgrenzbereich von -360° bis +360°, der mit einer horizontale Leiste definiert wird. Sobald die Grenze erreicht ist, können Sie das Gelenk nicht weiter bewegen. Gelenke können Sie mit einem Positionierbereich konfigurieren, der von dem Standard abweicht (siehe22.10. Gelenkgrenzen auf Seite 125). Dieser neue Bereich wird durch eine rote Zone auf der horizontalen Leiste gekennzeichnet.

WARNUNG

- Wenn unter Einstellung (Setup) die Schwerpunkteinstellung (siehe 25.4. Montage auf Seite 212) falsch ist oder der Roboterarm eine schwere Last transportiert, kann sich der Roboterarm in Bewegung versetzen (sinken), wenn Sie auf Freedrive drücken. Lassen Sie Freedrive in diesem Fall einfach los.
- 2. Verwenden Sie die richtigen Installationseinstellungen (z. B. Roboter Winkelmontage, Nutzlastmasse und Nutzlastschwerpunkt-Offset). Speichern und laden Sie die Installationsdateien zusammen mit dem Programm.
- Nutzlasteinstellungen und Robotermontageeinstellungen müssen ordnungsgemäß eingestellt sein, bevor die Freedrive-Schaltfläche betätigt wird. Sind diese Einstellungen falsch, bewegt sich der Roboterarm, sobald die Freedrive-Schaltfläche aktiviert wird.
- 4. Die **Freedrive**-Funktion sollte nur bei Installationen verwendet werden, in denen die Risikobewertung dies zulässt. Werkzeuge und Hindernisse sollten keine scharfen Kanten oder Quetschpunkte aufweisen. Stellen Sie sicher, dass sich niemand in der Reichweite des Roboterarms befindet.

26.5. Bearbeitungsanzeige "Pose"

Im **Poseneditor-**Bildschirm können präzise Zielgelenkpositionen oder eine Zielpose (Position und Ausrichtung) für den TCP konfiguriert werden. Hinweis: Diese Anzeige ist **offline** und steuert den Roboterarm nicht direkt.

26.5.1. Roboter

Das 3D-Bild zeigt die aktuelle Position des Roboterarms. Der **Schatten** zeigt die durch die auf dem Bildschirm angegebenen Werte bestimmte Zielposition des Roboterarms. Betätigen Sie die Lupensymbole, um hinein-/herauszuzoomen oder ziehen Sie einen Finger darüber, um die Ansicht zu ändern.

Wenn die spezifizierte Zielposition des Roboter-TCP einer Sicherheits- oder Auslöserebene nahe ist oder die Ausrichtung des Roboterwerkzeugs sich nahe am Limit der Werkzeugausrichtungsgrenze (siehe 22.11. Ebenen auf Seite 125) befindet, wird eine 3D-Darstellung des Näherungslimits der Grenze angezeigt. Sicherheitsebenen werden in Gelb und Schwarz zusammen mit einem kleinen Pfeil angezeigt, der für die Normal-Ebene steht, was angibt, auf welcher Seite der Ebene der Roboter-TCP positioniert werden darf. Auslöserebenen werden in Blau und Grün zusammen mit einem kleinen Pfeil angezeigt, der auf die Seite der Ebene zeigt, auf der die Grenzen des **Normal**-Modus (siehe 22.8. Sicherheitsmodi auf Seite 124) aktiv sind. Das Limit der Werkzeugausrichtungsgrenze wird anhand eines sphärischen Kegels visualisiert, wobei ein Vektor die aktuelle Ausrichtung des Roboterwerkzeugs anzeigt. Das Innere des Kegels repräsentiert den zulässigen Bereich für die Werkzeugausrichtung (Vektor). Befindet sich der Roboter-TCP nicht mehr in der Nähe der Bewegungsgrenze, verschwindet die 3D-Darstellung. Wenn der Ziel-TCP ein Grenzlimit überschreitet oder dem sehr nahe ist, ändert sich die Limitanzeige zu rot.

26.5.2. Funktion und Werkzeugposition

Der aktive TCP und die Koordinatenwerte der ausgewählten Funktion werden angezeigt. Die Koordinaten X, Y und Z geben die Werkzeugposition an. Die Koordinaten RX, RY und RZ geben die Ausrichtung an. Weitere Informationen zur Konfigurationen mehrerer benannter TCPs finden Sie hier (siehe 25.2. TCP-Konfiguration auf Seite 207).

Verwenden Sie das Auswahlmenü über den Feldern **RX**, **RY** und **RZ**, um die Art der Ausrichtungsdarstellung auszuwählen:

- Rotationsvektor [rad] Die Ausrichtung wird als *Rotationsvektor* angegeben. Die Länge der Achse entspricht dem zu drehenden Winkel in Radianten, und der Vektor selbst gibt die Achse an, um die die Drehung erfolgt. Dies ist die Standardeinstellung.
- Rotationsvektor [°] Die Ausrichtung wird als *Rotationsvektor* angegeben, wobei die Länge des Vektors der Rotationswinkel in Grad ist.
- **RPY** [rad] *Roll-*, *Nick-* und *Gier-*Winkel (*RPY*), die als Radianten angegeben werden. Die RPY-Rotationsmatrix (X-, Y'-, Z''-Rotation) ist bestimmt durch: $Rrpy(\gamma, \beta, \alpha) = RZ(\alpha) \cdot RY(\beta) \cdot RX(\gamma)$
- **RPY** [°] *Roll, pitch* und *Gier-* (*RPY*), die in Grad angegeben werden.

Durch Antippen der Werte können die Koordinaten verändert werden. Durch Tippen auf die Schaltflächen + und - rechts neben einem Feld können Sie den aktuellen Wert um einen Betrag erhöhen oder verringern. Durch Gedrückthalten einer Schaltfläche wird der Wert direkt erhöht/verringert.

26.5.3. Gelenkpositionen

Einzelne Gelenkpositionen werden direkt angegeben. Jede Gelenkposition kann einen Gelenkgrenzbereich von -360° bis +360° besitzen. Konfigurieren Sie die Gelenkpositionen wie folgt:

- Tippen Sie auf die Gelenkposition, um die Werte zu bearbeiten.
- Durch Tippen auf die Schaltflächen + und rechts neben einem Feld können Sie den aktuellen Wert um einen Betrag erhöhen oder verringern.
- Halten Sie die Schaltfläche gedrückt, um den Wert direkt zu erhöhen/verringern.

26.5.4. Schaltfläche "OK"

Wird dieser Bildschirm vom **Move**-Bildschirm aus aktiviert (siehe 26. Register Move auf Seite 243), gelangen Sie durch Antippen der Schaltfläche OK zurück zum **Move**-Bildschirm. Der Roboterarm verfährt zum angegebenen Ziel. War der zuletzt festgelegte Wert eine Werkzeugkoordinate, bewegt sich der Roboterarm mithilfe der Bewegungsart **FahreLinear** in die Zielposition. Alternativ bewegt sich der Roboterarm mithilfe der Bewegungsart **FahreAchse** in die Zielposition, wenn zuletzt eine Gelenkposition festgelegt wurde (siehe Bewegungsarten auf Seite 153).

26.5.5. Schaltfläche "Abbrechen"

Mit der Schaltfläche Abbrechen verlassen Sie den Bildschirm und verwerfen alle Änderungen.

27. E/A-Tab

27.1. Roboter

Ausführen Programm Installation		PROGRAMM <unbena< b=""> INSTALLATION default*</unbena<>	annt>* 📑 📑 冒	сс —
✔ Intern	Konfigurierbarer Eingang	Konfigurierbarer Ausgang	Digitaler Eingang	Digitaler Ausgang
Roboter	S-Guard Reset 4	0 🗌 🗌 4	0 🗌 4	0 🗌 🗍 4
> Extern	S-Guard Reset 🗾 🗾 5	1 🗌 🗖 5	1 🗌 5	Prog-Running 5
	2 🔜 🔂 6	2 🗌 🗌 6	Start-Prog 6	2 🗌 🗍 6
	3 7	3 🗌 🗍 7	Stop-Prog 7	3 🗌 🗍 7
	Analoger Eingang		Digitaler Werkzeugeingang	Digitaler Werkzeugausgang
	analog_in[0]	Spannung ▼ 10V	0 🗌 🗌 1	0 🗌 🗌 1
	analog_in[1] 0V	Spannung 10V		Strom
	Analoger Ausgang		Analoger Werkzeugeingang	
	analog_out[0]	Strom	analog_in[2] OV	0.00V Spannung 10V
	analog_out[1]	Strom 🔻	analog_in[3] 0V	0.00V Spannung 10V
	4,00	J MA		
Normal	Geschwindi	igkeit 100°	* D D D	Simulation

In diesem Bildschirm können Sie die spannungsführenden E/A-Signale von/zur Control-Box stets überwachen und einstellen. Der Bildschirm zeigt den aktuellen Status der Ein- und Ausgänge an, auch während der Programmausführung. Werden während der Ausführung des Programms Änderungen vorgenommen, so stoppt das Programm. Wenn ein Programm stoppt, behalten alle Ausgangssignale ihren Status bei. Der Bildschirm wird bei nur 10 Hz aktualisiert, sodass ein sehr schnelles Signal eventuell nicht richtig angezeigt wird.

Konfigurierbare E/A können für spezielle Sicherheitseinstellungen reserviert werden, die im Abschnitt Sicherheits-E/A-Konfiguration der Installation definiert sind (siehe 22.16. E/A auf Seite 133). Reservierte E/A tragen den Namen der Sicherheitsfunktion statt des Standardnamens oder eines benutzerdefinierten Namens. Konfigurierbare Ausgänge, die für Sicherheitseinstellungen reserviert sind, können nicht bedient werden und werden nur als LEDs angezeigt. Die elektrischen Angaben der Signale sind im Kapitel beschrieben.

Spannung

Unter Werkzeugausgang kann Spannung nur dann konfiguriert werden, wenn der Werkzeugausgang vom Benutzer gesteuert wird. Die Auswahl eines URCap unterbindet den Zugriff auf die Spannung.

Einstellung Analogdomäne

Die analogen E/A können entweder auf Stromausgang [4-20 mA] oder Spannungsausgang [0-10 V] eingestellt werden. Die Einstellungen werden für mögliche spätere Neustarts des Controllers bei der Speicherung eines Programms gespeichert. Die Auswahl eines URCap in Werkzeugausgang

unterbindet den Zugriff auf die Domäneneinstellung für die analogen Werkzeugeingänge.

Kommunikationsschnittstelle für Tools

Ist die Kommunikationsschnittstelle für Werkzeuge (TCI) aktiviert, so ist der Werkzeug-Analogeingang nicht mehr verfügbar. Auf dem E/A-Bildschirm ändert sich das Werkzeugeingangsfeld wie unten dargestellt.

Tool Analog Input	
Baud Rate	115200
Parity	None
Stop Bits	One
RX Idle Chars	1.50
TX Idle Chars	3.50

HINWEIS

Wenn der **Doppel-Pin-Modus** aktiviert ist, müssen die digitalen Ausgänge des Werkzeugs wie folgt benannt werden:

- tool_out [0] (Strom)
- tool_out [1] (Erdung)

Das Feld Werkzeugausgang ist unten abgebildet.

27.2. MODBUS

Der Screenshot unten zeigt die E/A-Signale des MODBUS-Clients, wie sie bei der Installation eingerichtet werden. Mithilfe der Dropdownmenüs am oberen Rand des Bildschirms können Sie die angezeigten Inhalte basierend auf Signaltyp und MODBUS-Einheit ändern, wenn mehr als eine konfiguriert sind. Jedes Signal in der Listen enthält seinen Verbindungsstatus, Wert, Name, seine Adresse und sein Signal. Die Ausgangssignale können umgeschaltet werden, wenn der Status der Verbindung und die Wahl für die E/A-Tab-Steuerung es erlauben (siehe).

27. E/A-Tab

Ausführen Programm Installation	PROGRAMM <unben< th=""><th>annt>* 🛄 📑 🖬 C C 💳</th></unben<>	annt>* 🛄 📑 🖬 C C 💳
> Intern ✓ Extern	MODBUS-Typ: Alle 🔻 MODBUS-Einheit: Alle	▼
MODBUS	Eingänge	Ausgänge
	MODBUS-Einheit: 10.0.0.2	MODBUS-Einheit: 10.0.0.2
	MODBUS_4 [260]	MODBUS_3 [18]
	MODBUS-Einheit: 127.0.0.1	MODBUS-Einheit: 127.0.0.1
	0 MODBUS_1 [0]	MODBUS_2 [16]
		MODBUS_5 [17]
		MODBUS_6 [18]
		MODBUS_7 [19]
		MODBUS_8 [20]
		MODBUS_9 [21]
O Normal	Geschwindigkeit 🦲 100	% 🕑 🖸 O Simulation 🔵

28. Der Tab "Protokoll"

Ausführen Programm Installation Bewegen		Protokoli		PROGRAMM <unbenannt></unbenannt> * INSTALLATION default*	* 📑	Öffnen Speichern		د د د د
Controllerwerte		Prozessoriast Gele	enk					
Controllertemp. Hauptspannung Durchschnittl. Leistung Robote Strom Strom E/A Strom Werkzeug	24.C 48,C er C 0,C C	 Basis Schulter Elibogen Handgelenk 1 Handgelenk 2 Handgelenk 3 	ОК ОК ОК ОК ОК			0,0A 25.5 ° C 2,5A 25.6 ° C 1,6A 24.5 ° C 0,0A 24.0 ° C 0,0A 23.5 ° C 0,0A 23.5 ° C	0,0 V 0,0 V 0,0 V 0,0 V 0,0 V 0,0 V	
Protokoll		Ansich	:: ()	1 🛛 🖉 L	.öschen		Ŧ	Support-Datei
2021-02-02 03:13:19.491 F	PolyScop	ie COAO				Wählen Sie weite	einen Eintrag a	aus dem Protokoll, um ien zu erhalten.
Normal		Geschwindigk	eit 🥌	100%				Simulation

Das Tab Protokoll zeigt Informationen zu Roboterarm und Control-Box an.

28.1. Messwerte und gemeinsame Last

Im Lesebereich werden Control-Box-Informationen angezeigt. Im Fenster Gelenklast werden die Informationen für die einzelnen Roboterarmgelenke angezeigt. Jedes Gelenk zeigt Folgendes an:

- Temperatur
- Last
- Status
- Spannung

28.2. Protokoll nach Datum

Die erste Spalte zeigt Protokolleinträge, die nach Schweregrad kategorisiert sind. Die zweite Spalte zeigt eine Büroklammer an, wenn zu einem Protokolleintrag ein Fehlerbericht vorhanden ist. Die nächsten zwei Spalten zeigen die Ankunftszeit und die Quelle der Nachricht an. Die letzte Spalte zeigt eine Kurzbeschreibung der eigentlichen Meldung.

Einige Protokollmeldungen sind darauf ausgelegt, weitere Informationen zu bieten, die auf der rechten Seite nach Auswahl des Protokolleintrags angezeigt werden.

Schweregrad der Meldung

Sie können Nachrichten filtern, indem Sie die Umschalt-Schaltflächen wählen, die dem Schweregrad des Protokolleintrags entsprechen, oder, ob eine Anlage vorhanden ist. Die folgende Tabelle beschreibt den Schweregrad der Meldungen.

- Bietet allgemeine Informationen, wie z. B. Status eines Programms, Änderungen des Controllers und der Controller-Version.
- Probleme, die möglicherweise aufgetreten sind, aber das System konnte wiederhergestellt werden.
- Eine Verletzung liegt vor, wenn die Sicherheitsgrenze überschritten wird. Dies veranlasst den Roboter, einen sicherheitsrelevanten Stopp durchzuführen.
- Ein Fehler tritt auf, wenn ein nicht wiederherstellbarer Fehler im System vorhanden ist. Dies veranlasst den Roboter, einen sicherheitsrelevanten Stopp durchzuführen.

Wenn Sie einen Protokolleintrag auswählen, werden rechts im Bildschirm zusätzliche Informationen angezeigt. Durch die Auswahl des Filter Anlagen werden entweder nur die Eintragsanhänge oder alle Einträge angezeigt.

28.3. Fehlerberichte speichern

Erscheint ein Büroklammer-Symbol in der Protokollzeile, so steht ein ausführlicher Statusbericht zur Verfügung.

HINWEIS

Der jeweils älteste Bericht wird gelöscht wenn ein neuer generiert wird. Nur die aktuellsten fünf Berichte werden gespeichert.

1. Wählen Sie eine Protokollzeile aus und tippen Sie auf die Option Bericht speichern, um den Bericht auf einem USB-Laufwerk zu speichern.

Sie können den Bericht speichern, während ein Programm ausgeführt wird.

Die folgende Liste von Fehlern kann nachverfolgt und exportiert werden:

- Notabschaltung
- Fehler
- Interne PolyScope Ausnahmen
- Sicherheitsstopp
- Nicht abgefangener Ausnahmefehler in URCap
- Verstoß

Der exportierte Bericht enthält ein Benutzerprogramm, ein Journalprotokoll, eine Installation und eine Liste mit ausgeführten Diensten.

28.4. Datei für technische Unterstützung (Support-Datei)

Die Berichtsdatei enthält Informationen, die für die Diagnose und die Nachbildung von Problemen hilfreich sind. Sie enthält Aufzeichnungen über frühere Roboterstörungen sowie aktuelle Roboterkonfigurationen, Programme und Installationen. Die Berichtsdatei kann auf ein externes USB-Laufwerk gespeichert werden. Tippen Sie im Protokollbildschirm auf **Support-Datei** und folgen Sie den Anweisungen auf dem Bildschirm, um auf die Funktion zuzugreifen.

HINWEIS

Der Exportvorgang kann je nach Geschwindigkeit des USB-Laufwerks und der Größe der vom Roboter-Dateisystem gesammelten Dateien bis zu 10 Minuten dauern. Der Bericht wird als normale Zip-Datei gespeichert, die nicht passwortgeschützt ist, und kann vor dem Senden an den technischen Support bearbeitet werden.

29. Programm- und Installations-Manager

PROGRAMM ABCDE

IR

UNIVERSAL ROBOTS

Der Programm- und Installations-Manager enthält drei Symbole, über die Sie Programme und Installationen erstellen, laden und konfigurieren können: **Neu...**, **Öffnen...** und **Speichern...** Im Dateipfad werden das derzeit geladene Programm, der Name und die Art der Installation angezeigt. Beim Erstellen oder Laden eines neuen Programms bzw. einer Installation ändert sich der Dateipfad. Für einen Roboter können mehrere Installationsdateien gespeichert sein. Die erstellten Programme laden und nutzen die aktive Installation automatisch.

29.1. Öffnen...

Dient zum Laden eines Programms und/oder einer Installation.

Programm öffnen

- 1. Klicken Sie im Programm- und Installations-Manager auf Öffnen... und wählen Sie ein Programm.
- 2. Wählen Sie ein vorhandenes Programm im Bildschirm "Programm laden" und tippen Sie auf "Öffnen".
- 3. Stellen Sie unter Dateipfad fest, ob der gewünschte Programmname angezeigt wird.

Installation öffnen.

UNIVERSAL ROBOTS

- 1. Klicken Sie im Programm- und Installations-Manager auf Öffnen... und wählen Sie "Installation".
- 2. Wählen Sie im Bildschirm "Roboter-Installation laden" eine vorhandene Installation und tippen Sie auf "Öffnen".
- 3. Tippen Sie im Feld Sicherheitskonfiguration auf Übernehmen und Neustart, um einen Neustart des Roboters durchzuführen.
- 4. Wählen Sie "Installation festlegen", um die Installation für das aktuelle Programm einzustellen.
- 5. Stellen Sie unter Dateipfad fest, ob der gewünschte Installationsname angezeigt wird.

29.2. Neu...

Dient zum Erstellen eines neuen Programms und/oder einer Installation.

Ein neues Programm erstellen

- 1. Klicken Sie im Programm- und Installations-Manager auf Neu... und wählen Sie "Programm".
- 2. Konfigurieren Sie das neue Programm im Bildschirm Programm wie gewünscht.
- 3. Klicken Sie im Programm- und Installations-Manager auf **Speichern...** und wählen Sie "Alles speichern" oder "Programm speichern als...".
- 4. Vergeben Sie im Bildschirm "Programm speichern als" einen Dateinamen und tippen Sie auf "Speichern".
- 5. Stellen Sie unter Dateipfad fest, ob der neue Programmname angezeigt wird.

Eine neue Installation erstellen

Speichern Sie Ihre Installation, um Sie nach dem Ausschalten des Roboters zu einem späteren Zeitpunkt wiederverwenden können.

- 1. Klicken Sie im Programm- und Installations-Manager auf Neu... und wählen Sie "Installation".
- 2. Tippen Sie auf Sicherheitskonfiguration bestätigen.
- 3. Konfigurieren Sie die neue Installation im Bildschirm Installation wie gewünscht.
- 4. Klicken Sie im Programm- und Installations-Manager auf **Speichern...** und wählen Sie "Installation speichern als...".
- 5. Vergeben Sie einen Dateinamen im Bildschirm "Roboterinstallation speichern" und tippen Sie auf "Speichern".
- 6. Wählen Sie "Installation festlegen", um die Installation für das aktuelle Programm einzustellen.
- 7. Stellen Sie unter Dateipfad fest, ob der Name der neuen Installation angezeigt wird.

29.3. Speichern...

Auführen Programm Installation Bewegen E/A Protokol	PROGRAMM ABCDE C C C C C C C C C C C C C C C C C C C
Programm	Variablen
ABCDE	Programm speichern als
Programm laden	Kaina Variahlan
Gestoppt	Keine Variablen
Betriebszeit	
Tage Stunden Minuten Sekunden 0 00 01 37	
	U Wegpunkte anzeigen
O Normal Ges	schwindigkelt 🛑 100% 🕞 🖸 🖸 Simulation 🔵

Speichern... bietet drei Möglichkeiten. Je nach Programm/Installation, das/die Sie laden oder erstellen, haben Sie folgende Möglichkeiten:

Alles speichern, um das aktuelle Programm und die Installation direkt zu speichern, ohne dass Sie das System nach einem anderen Verzeichnis oder anderen Namen fragt. Wenn an dem Programm oder der Installation nichts geändert wurde, ist die Schaltfläche "Alle speichern …" deaktiviert.

Programm speichern als..., um den Namen und das Verzeichnis für das neue Programm zu ändern. Die aktuelle Installation wird mit dem bestehenden Namen und Verzeichnis ebenfalls gespeichert.

Programm speichern als..., um den Namen und das Verzeichnis für die neue Installation zu ändern. Das aktuelle Programm wird mit dem bestehenden Namen und Verzeichnis ebenfalls gespeichert.

29.4. Datei-Manager

	Programm laden	
Reu Ausschneiden Kopieren Einfügen Löschen Umbenernen		e E Sicherun
StartABCDE.urp		
Nateiname:	Filter:	
^J ateiname: i tartABCDE.urp	Filter: Universal Robots Programmdatelen	~

Diese Abbildung zeigt den Ladebildschirm, der die folgenden Schaltflächen umfasst:

Breadcrumb-Pfad

Der Breadcrumb-Pfad zeigt eine Verzeichnisliste, die zum aktuellen Ort führt. Wird in der Liste ein Verzeichnisname ausgewählt, wechselt der Ort zu diesem Verzeichnis und zeigt es im Dateiauswahlbereich an.

Dateiauswahlbereich

Tippen Sie auf den Namen einer Datei, um diese zu öffnen. Ein Verzeichnis wird ausgewählt, indem Sie für eine halbe Sekunde auf seinen Namen drücken.

Dateifilter

Sie können die angezeigten Dateitypen festlegen. Nach der Auswahl der Backup-Dateien werden in diesem Bereich die zehn zuletzt gespeicherten Programmversionen angezeigt, wobei ,,.old0" die neueste und ,,.old9" die älteste ist.

Dateiname

Hier wird die ausgewählte Datei angezeigt. Beim Speichern einer Datei verwenden Sie bitte das Textfeld für die Eingabe des Dateinamens.

Aktionsschaltflächen

Die Aktionsleiste besteht aus einer Reihe von Schaltflächen, mit denen Sie Dateien verwalten können. Die Aktion "Backup" auf der rechten Seite der Aktionsleiste unterstützt die Sicherung aktuell ausgewählter Dateien und Verzeichnisse zu einem Speicherort und zu USB. Die Aktion "Backup" ist nur aktiviert, wenn ein externes Medium am USB-Port angeschlossen ist.

30. Hamburger-Menü

30.1. Hilfe

Für alle Elemente, die die PolyScope Funktionen betreffen, können Sie nach Definitionen suchen.

- 1. Klicken Sie rechts in der Kopfzeile auf das Hamburger-Menü und wählen Sie Hilfe.
- 2. Tippen Sie auf eines der roten Fragezeichen, die eingeblendet werden, um das gewünschte Element zu definieren.
- 3. Tippen oben rechts im Definitionsbildschirm des Elements auf das rote X, um die Hilfe zu verlassen.

30.2. Info

Hier können Sie die Version sowie rechtliche Angaben einsehen.

- 1. Klicken Sie auf das Hamburger-Menü und wählen Sie Info.
- 2. Tippen Sie entweder auf Version oder auf Impressum, um die jeweiligen Angaben aufzurufen.
- 3. Tippen Sie auf Schließen, um zum Ausgangsbildschirm zurückzukehren.

30.3. Einstellungen

Personalisierung der Einstellungen von PolyScope

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Im Seitenmenü links wählen Sie einen zu personalisierenden Punkt. Falls ein Passwort für den Betriebsmodus festgelegt wurde, steht **System** im Seitenmenü nur dem Programmierer zur Verfügung.
- 3. Klicken Sie unten rechts auf Übernehmen und neu starten, um Ihre Änderungen zu übernehmen.
- 4. Klicken Sie unten links auf **Beenden**, um den Einstellungsbildschirm zu schließen, ohne Änderungen vorzunehmen.

30.3.1. Einstellungen

Sprache

Die Sprache und Maßeinheit (metrisch oder US/GB) können Sie in PolyScope ändern.

Zeit

Datum und Uhrzeit wie in PolyScope dargestellt, ändern Sie wie folgt:

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Tippen Sie unter Einstellungen auf Zeit.
- 3. Passen Sie Zeit und/oder Datum wie gewünscht an.
- 4. Tippen Sie auf Übernehmen und Neu starten, damit Ihre Änderungen wirksam werden.

Datum und Uhrzeit werden im Protokoll-Tab angezeigt (siehe 28.2. Protokoll nach Datum auf Seite 253) unter **Datumsprotokoll**.

Geschwindigkeitsregler ausblenden

Auf der Unterseite des Registers Run kann der Benutzer mithilfe des Geschwindigkeitsregler die Geschwindigkeit eines laufenden Programms ändern.

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Tippen Sie unter Einstellungen auf Ausführungs-Bildschirm.
- 3. Aktivieren Sie das Kontrollkästchen zum Anzeigen oder Ausblenden des **Geschwindigkeitsreglers**.

30.3.2. Passwort

Administrator

Verwenden Sie das Administratorpasswort, um die Sicherheitskonfiguration des Systems zu ändern (einschließlich des Netzwerkzugriffs).

Das Administratorpasswort entspricht dem Passwort für das Root-Benutzerkonto auf dem Linux-System, das auf dem Roboter ausgeführt wird, was in einigen Anwendungsfällen für Netzwerke wie SSH oder SFTP erforderlich sein kann.

WARNUNG

Ein verloren gegangenes Administratorpasswort kann nicht wiederhergestellt werden.

• Ergreifen Sie die entsprechenden Maßnahmen, um sicherzustellen, dass Ihr Administratorpasswort nicht verloren geht.

Einrichtung des Administratorpassworts

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Tippen Sie unter **Passwort** auf Administrator.
- 3. Geben Sie unter Aktuelles Passwort das Standardpasswort ein: easybot.
- 4. Geben Sie unter Neues Passwort ein neues Passwort ein.

Das Erstellen eines starken, geheimen Passworts bietet die beste Sicherheit für Ihr System.

- 5. Geben Sie unter **Neues Passwort bestätigen** erneut Ihr neues Passwort ein.
- 6. Tippen Sie auf Übernehmen, um die Passwortänderung zu bestätigen.

Sicherheit

Das Sicherheitspasswort verhindert eine unbefugte Änderung der Sicherheitseinstellungen.

30.4. System

30.4.1. Sicherung und Wiederherstellung

Speichern Sie eine vollständige Kopie Ihres Systems auf einem USB-Laufwerk, damit Sie den vorherigen Status Ihres Systems wiederherstellen können. Dies kann nach Schäden an der Festplatte oder nach versehentlichem Löschen erforderlich werden.

1	

HINWEIS

Nutzen Sie für eine Sicherung und Wiederherstellung einen der USB-Anschlüsse in der Control-Box (CB). Ein CB USB-Anschluss ist stabiler und die Wiederherstellung erfordert weniger Zeit.

Sicherung des Systems

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Tippen Sie unter "System" auf Sichern/Wiederherstellen.
- 3. Wählen Sie einen Speicherort für die Sicherungsdatei aus und drücken Sie auf Sichern.
- 4. Tippen Sie OK für einen kompletten Neustart des Systems.

Wiederherstellen des Systems

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Tippen Sie unter "System" auf Sichern/Wiederherstellen.
- 3. Wählen Sie Ihre Sicherungsdatei aus und drücken Sie auf Wiederherstellen.
- 4. Tippen Sie zum Bestätigen auf OK.

30.4.2. Aktualisieren

Installieren Sie Updates von einem USB-Laufwerk, um sicherzustellen, dass die Robotersoftware auf dem neuesten Stand ist.

Softwareaktualisierung

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Tippen Sie unter "System" auf Aktualisieren.
- 3. Schließen Sie ein USB-Laufwerk an und klicken Sie auf **Suchen**, um die gültigen Aktualisierungsdateien aufzulisten.
- 4. Wählen Sie aus der Liste der gültigen Aktualisierungsdateien die gewünschte Version aus und drücken Sie zum Installieren auf **Aktualisieren**.

WARNUNG

Prüfen Sie nach einer Softwareaktualisierung stets Ihre Programme. Die Aktualisierung könnte die Bahnen in Ihrem Programm verändert haben.

30.4.3. Netzwerk

Die Roboterverbindung zu einem Netzwerk können Sie durch Auswahl einer der drei verfügbaren Vernetzungen festlegen:

- DHCP
- Statische IP-Adresse
- Deaktiviertes Netzwerk (falls Sie Ihren Roboter nicht vernetzen möchten)

Je nach ausgewählter Vernetzung müssen Sie die Netzwerkeinstellungen konfigurieren:

- IP-Adresse
- Subnet-Maske
- Standard-Gateway
- Bevorzugter DNS-Server
- Alternativer DNS-Server

Tippen Sie auf Übernehmen, um die Änderungen zu übernehmen.

30.4.4. Verwaltung von URCaps

Sie können Ihre bestehenden URCaps verwalten oder in Ihrem Roboter neue installieren.

- 1. Tippen Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Tippen Sie unter "System" auf URCaps.
- 3. Tippen Sie auf +, wählen Sie die .urcap Datei und anschließend Öffnen.
- 4. Wenn Sie die Installation des jeweiligen URCap fortsetzen möchten, drücken Sie Neustart.

Anschließend ist das URCaps installiert und kann verwendet werden.

5. Zum Löschen eines installierten URCaps wählen Sie es unter "Aktive URCaps" aus, drücken auf - und anschließend auf **Neustart**, damit die Änderungen in Kraft treten.

Weitere Einzelheiten zum neuen URCap erscheinen im Feld **Aktive URCaps**. Ein Statussymbol zeigt den Status des URCap an, wie unten aufgeführt:

- • URCap ok: Das URCap ist installiert und läuft ordnungsgemäß.
- URCap-Fehler: Das URCap ist installiert, aber kann nicht ausgeführt werden. Kontaktieren Sie den Entwickler des URCaps.
- O URCap-Neustart erforderlich: Das URCap wurde gerade installiert und ein Neustart ist erforderlich.

Fehlermeldungen und Informationen über das URCap erscheinen im Feld **URCap-Informationen**. Je nach Art der festgestellten Fehler erscheinen unterschiedliche Fehlermeldungen.

30.4.5. Fernsteuerung

Gesteuert werden kann ein Roboter entweder durch lokale Steuerung (Steuerung mittels Teach Pendant) oder durch Remote-Steuerung (externe Steuerung).

Lokale Steuerung erlaubt nicht	Fernsteuerung erlaubt nicht
das Einschalten und Lösen der Bremse über das Netzwerk	das Bewegen des Roboters über den Move-Tab
das Empfangen und Ausführen von Roboterprogrammen und Installationen, die über das Netzwerk an den Roboter geschickt wurden	das Starten aus dem Teach Pendant
den automatischen Start von Programmen beim Booten bzw. eine Steuerung über digitale Eingänge	das Laden von Programmen und Installationen über das Teach Pendant
das Automatische Lösen der Bremse beim Booten bzw. eine Steuerung über digitale Eingänge	Freedrive
das Starten von Programmen bzw. eine Steuerung über digitale Eingänge	

Die Steuerung des Roboters über ein Netzwerk oder einen Digitaleingang ist standardmäßig eingeschränkt.

- Diese Einschränkung wird durch Aktivierung und Auswahl der Funktion Remote-Steuerung aufgehoben.
- Die Fernsteuerung können Sie durch Schalten des Roboterprofils Lokale Steuerung (PolyScope Kontrolle) aktivieren, mit dem die gesamte Kontrolle über die Programmausführung und die

UNIVERSAL ROBOTS

Scriptausführung über das Netzwerk ermöglicht wird.

• Um auf den Remote-Modus und Lokalen Modus im Profil zuzugreifen, müssen Sie die Funktion Fernsteuerung unter Einstellungen aktivieren.

Fernsteuerung aktivieren

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Tippen Sie unter "System" auf Fernsteuerung.
- 3. Tippen Sie **Aktivieren**, um die Fernsteuerungsfunktion verfügbar zu machen. PolyScope bleibt aktiv. Durch das Aktivieren der Fernsteuerung wird die Funktion nicht sofort aktiv. Sie können dadurch von Lokaler Steuerung auf Fernsteuerung umschalten.
- 4. Wählen Sie im Profilmenü **Fernsteuerung**, um PolyScope zu ändern. Sie können wieder zur Lokalen Steuerung durch Umschaltung im Profilmenü zurückkehren.

HINWEIS

- Zwar sind Ihre Aktionen in PolyScope durch die Fernsteuerung eingeschränkt, den Roboterstatus können Sie aber dennoch überwachen.
- Wenn ein Robotersystem in der Fernsteuerung ausgeschaltet wird, startet es in der Fernsteuerung.

30.4.6. Sicherheit

Allgemein

Über die Registerkarte "Allgemein" können magische Dateien sowie der Netzwerkzugriff auf den Roboter konfiguriert werden.

Magische Dateien

Eine magische Datei ist ein Skript auf einem USB-Laufwerk, das ausgeführt wird, sobald es in das System eingesteckt wird.

Magische Dateien haben unbeschränkte Berechtigungen, Systemänderungen vorzunehmen und müssen daher als Sicherheitsrisiko betrachtet werden.

Ausführung magischer Dateien

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Wählen Sie unter "Sicherheit" die Option Allgemein.
- 3. Geben Sie Ihr Administratorpasswort ein.
- 4. Aktivieren Sie Magische Dateien ausführen.

Konfigurieren eingehender Verbindungen

Verwenden Sie **Eingehenden Netzwerkzugriff auf ein bestimmtes Subnetz beschränken**, um sicherzustellen, dass Netzwerkverbindungen, die von einer IP-Adresse außerhalb des angegebenen Subnetzes stammen, abgewiesen werden. Zum Beispiel:

- Verwenden Sie 192.168.1.0/24, um nur den Zugriff von Hosts im Bereich von 192.168.1.0 192.168.1.255 zuzulassen.
- Verwenden Sie 192.168.1.96, um den eingehenden Zugriff nur von einem Host zuzulassen.

Lassen Sie das Feld leer, um die Subnetzbeschränkung zu deaktivieren.

Verwenden Sie **Eingehenden Zugriff auf zusätzliche Schnittstellen (nach Port) deaktivieren**, um sicherzustellen, dass jede eingehende Verbindung zu den angegebenen Ports abgewiesen wird.

Zum Beispiel:

- Verwenden Sie 0-65535, um alle Ports zu blockieren. Verwenden Sie 564, um einen bestimmten Port zu blockieren.
- Verwenden Sie 2318-3412,22,56-67, um bestimmte Ports und bestimmte Portbereiche zu blockieren.

Lassen Sie dieses Feld leer, um das Blockieren von Ports zu vermeiden. Jeder aktivierte Service (siehe Einstellungen->Sicherheit->Services) hat Vorrang vor der Blockierung von Ports.

WARNUNG

URCaps können erfordern, dass bestimmte Netzwerkschnittstellen offen sind, um zu funktionieren.

 Wenden Sie sich an den/die Hersteller von URCaps, wenn f
ür bestimmte URCaps bestimmte Netzwerkschnittstellen (Ports/Dienste) ge
öffnet sein m
üssen.

Konfigurieren eingehender Verbindungen

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Wählen Sie unter "Sicherheit" die Option Allgemein.
- 3. Geben Sie Ihr Administratorpasswort ein.
- 4. Geben Sie unter **Eingehenden Netzwerkzugriff auf ein bestimmtes Subnetz beschränken** die Subnetzbeschränkungen ein.
- 5. Geben Sie die Schnittstellen ein, die in Eingehenden Zugriff auf zusätzliche Schnittstellen (nach Port) deaktivieren geschlossen werden sollen.

Secure Shell (SSH)

Secure Shell (SSH) ermöglicht eine private (verschlüsselte) und authentifizierte Verbindung zum Roboter:

- Zugriff auf das Betriebssystem
- Kopieren von Dateien
- Tunneling von Netzwerkschnittstellen.

HINWEIS

SSH ist ein mächtiges Werkzeug, wenn es bestimmungsgemäß verwendet wird. Vergewissern Sie sich, dass Sie den Umgang mit der SSH-Technologie verstehen, bevor Sie sich zur Sicherung einer Roboteranwendung auf die SSH-Technologie verlassen.

Aktivieren des SSH-Zugriffs

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Wählen Sie unter "Sicherheit" die Option Security Shell.
- 3. Geben Sie Ihr Administratorpasswort ein.
- 4. Konfigurieren der Secure Shell-Einstellungen:
 - Wählen Sie SSH-Zugriff aktivieren.
 - Auswählen, um Portweiterleitung zulassen (im Fernsteuerungsmodus) zu aktivieren/deaktivieren.

Die Portweiterleitung ist nur im Modus "Fernsteuerung" verfügbar.

Die Portweiterleitung ist eine empfohlene Technik, um offene Schnittstellen (z. B. den Dashboard-Service) in einen sicheren und verschlüsselten Tunnel einzuschließen, der eine Authentifizierung erfordert.

5. Wählen Sie den Authentifizierungstyp.

Authentifizierung

Bei jeder SSH-Verbindung muss sich der verbindende Benutzer bei der Verbindungsherstellung authentifizieren. Sie können die Authentifizierung mit einem Passwort und/oder mit einem vorinstallierten, autorisierten Schlüssel einrichten.

Verwalten autorisierter Schlüssel

Die schlüsselbasierte Authentifizierung basiert auf vorinstallierten Schlüsseln.

Hier werden die verfügbaren Schlüssel aufgelistet sowie Schaltflächen zum Entfernen eines ausgewählten Schlüssels aus der Liste und zum Hinzufügen neuer Schlüssel.

- 1. Tippen Sie auf Hinzufügen, um ein Dateiauswahldialogfeld zu öffnen.
- 2. Wählen Sie einen Schlüssel aus der Datei.

Die Datei wird zeilenweise gelesen, wobei nur Zeilen hinzugefügt werden, die nicht leer sind und nicht als Kommentare erkannt werden (beginnend mit #). Es erfolgt keine Validierung hinzugefügter Zeilen.

3. Sie müssen dem für authorized_keys verwendeten Format entsprechen.

Services

Services listet die Standardservices auf, die auf dem Roboter ausgeführt werden. Sie können jeden Service aktivieren oder deaktivieren.

Ein aktivierter Service bleibt verfügbar, wenn die mit diesem Service verbundenen Ports blockiert sind. Das einfache Sperren eines Ports reicht also nicht aus, um den Zugriff auf die aufgeführten Services zu verhindern, wenn diese aktiviert sind.

Die aufgeführten Services müssen durch Auswahl von Allgemein und Eingehende Verbindungen deaktiviert werden, um den Zugriff zu verhindern.

Einen Service aktivieren

- 1. Drücken Sie in der Kopfzeile auf das Hamburger-Menü-Symbol und wählen Sie Einstellungen.
- 2. Wählen Sie unter "Sicherheit" die Option Services.
- 3. Geben Sie Ihr Administratorpasswort ein.
- 4. Wählen Sie eine Option aus der Liste und tippen Sie auf **Aktivieren** oder tippen Sie auf **Deaktivieren**.

30.5. Roboter Herunterfahren

Die Schaltfläche Roboter abschalten dient zum Abschalten oder Neustarten des Roboters.

Abschaltung des Roboters

- 1. Tippen Sie in der Kopfzeile auf das Hamburger-Menü und wählen Sie Roboter Herunterfahren.
- 2. Wenn das Dialogfeld "Roboter abschalten" erscheint, tippen Sie auf Ausschalten.

Stoppkategorie 0

Die Roboterbewegung wird durch die sofortige Trennung der Stromversorgung zum Roboter gestoppt. Es ist ein ungesteuerter Stopp, bei dem der Roboter vom programmierten Pfad abweichen kann, da jedes Gelenk unvermittelt bremst. Dieser Sicherheitsstopp wird verwendet, wenn ein sicherheitsrelevanter Grenzwert überschritten wird oder eine Störung in den sicherheitsrelevanten Teilen des Steuersystems auftritt. Weitere Informationen finden Sie **unter ISO 13850** oder **IEC 60204-1**.

Stoppkategorie 1

Die Roboterbewegung wird gestoppt, indem der dem Roboter verbleibende Strom zum Erzielen des Stopps eingesetzt wird und die Stromversorgung getrennt wird, wenn der Stopp erzielt wurde. Es ist ein gesteuerter Stopp, bei dem der Roboter dem programmierten Pfad weiterhin folgt. Die Stromversorgung wird getrennt, sobald der Roboter still steht. Weitere Informationen finden Sie **unter ISO 13850** oder **IEC 60204-1**.

Stoppkategorie 2

Ein gesteuerter Stopp, bei dem dem Roboter weiterhin Strom zur Verfügung steht. Das sicherheitsrelevante Steuersystem überwacht, dass der Roboter in der Stopp-Position verbleibt. Weitere Informationen finden Sie **unter IEC 60204-1**.

Stoppkategorie 3

Der Begriff *Kategorie* ist nicht mit dem Begriff *Stoppkategorie* zu verwechseln. *Kategorie* bezieht sich auf den Architekturtyp, der als Grundlage für einen bestimmten *Performance Level* verwendet wird. Eine wesentliche Eigenschaft einer *Kategorie 3*-Architektur ist es, dass ein einzelner Fehler nicht zum Verlust der Sicherheitsfunktion führen kann. Weitere Informationen finden Sie **unter ISO 13849-1**.

Performance Level (PL)

Der Performance Level ist eine diskrete Stufe, die genutzt wird, um die Fähigkeit von sicherheitsrelevanten Teilen des Steuersystems zur Ausführung von Sicherheitsfunktionen unter vorhersehbaren Bedingungen auszudrücken. PLd ist die zweithöchste Zuverlässigkeitsklassifikation und steht für eine extrem zuverlässige Sicherheitsfunktion. Weitere Informationen finden Sie **unter ISO 13849-1**.

Der Diagnosedeckungsgrad (DC)

gibt die Wirksamkeit der Diagnose an, die für das Erreichen des angegebenen Performance Level implementiert ist. Weitere Informationen finden Sie **unter ISO 13849-1**.

MTTFd

Die Mittlere Zeit bis zu einem gefährlichen Ausfall (MTTFd) ist ein Wert auf Basis von Berechnungen und Tests, der dazu verwendet wird, den angegebenen Performance Level zu erreichen. Weitere Informationen finden Sie **unter ISO 13849-1**.

Integrator

Der Integrator legt die endgültige Roboterinstallation aus. Der Integrator ist für die abschließende Risikobewertung verantwortlich und muss sicherstellen, dass die endgültige Installation den örtlichen Gesetzen und Bestimmungen entspricht.

Benutzerhandbuch

Risikobewertung

31. Glossar

Eine Risikobewertung umfasst den gesamten Vorgang der Identifizierung aller Risiken und deren Reduzierung auf ein angemessenes Niveau. Eine Risikobewertung sollte stets dokumentiert werden. Siehe **ISO 12100** für weitere Informationen.

Kooperative Roboteranwendung

Der Begriff *kollaborativ* bezieht sich auf das Zusammenwirken von Bediener und Roboter in einer Roboteranwendung. Für genaue Definitionen und Beschreibungen, siehe ISO 10218-1 und ISO 10218-2.

Sicherheitskonfiguration

Sicherheitsrelevante Funktionen und Schnittstellen sind durch Sicherheitskonfigurationsparameter konfigurierbar. Diese werden über die Softwareschnittstelle definiert, siehe Teil Teil II PolyScope-Handbuch auf Seite 97.

31.1. Index

A

About 263 Align 244 Auto 244 Automatic mode 115 Automatic Mode Safeguard Reset 134 Automatic Mode Safeguard Stop 134

Base 64, 99, 155 Base feature 227 Blend parameters 158 Blending 157 Bracket 32

Cone angle 132 Cone center 132 Copyright © 2009-2021 by Universal Robots A/S. Alle Rechte vorbehalten.

Configurable I/O 36 control box 79, 103, 249 Control Box 2, 30, 32, 35, 44-45, 216 Conveyor Tracking 35, 192 Conveyor Tracking Setup 222 Custom 122

Delete 127 Direction Vector 164 Disabled 126, 128 Disabled Tool direction limit 132

Copyright © 2009-2021 by Universal Robots A/S. Alle Rechte vorbehalten.

Edit Position 130 Elbow 64, 99 Elbow Force 123 Elbow Speed 123 Error 195 Ethernet 32, 237 EtherNet/IP 32, 213, 241 Expression Editor 177

Factory Presets 122 Feature 223, 227, 244 Feature menu 190 File Path 257 Folder 170 Footer 99, 141
Frame 190

Freedrive 23, 115, 191, 212, 228, 244-245

G

General purpose I/O 36

Hamburger Menu 102 Header 99 Home 244

I/O 32, 37, 101, 133, 213, 215, 249 Initialize 102, 104 input signals 133 Installation 101, 257-258 Installation variables 216

integrator 12

Joint Limits 125 joint space 153

Log 101, 253

Manual High Speed 102, 117 Manual mode 115 Mini Displayport 32 MODBUS 32, 223, 237, 240, 250 mode Automatic 101, 117 Local 102 Manual 101, 117 Remote 102 Modes 23, 126 Momentum 122 Motion 190 Mounting bracket 2 Move 101, 115, 153-154, 168, 248 Move robot to 141 Move Tool 243 MoveJ 153, 229, 248 MoveL 153, 229, 248 MoveP 153, 229

Ν

Copyright @ 2009-2021 by Universal Robots A/S. Alle Rechte vorbehalten.

New... 101, 257 Normal 126 Normal & Reduced 126 Normal & Reduced Tool direction limit 132 Normal mode 124, 132, 151, 247 Normal Plane 128 Normal Tool direction limit 132 Not Reduced mode 135

0

D

Open... 101, 257 output signals 134

Pan angle 133
Play 102, 141
Point 190
PolyScope 1, 23, 99, 103, 105, 136, 139, 171, 207, 237, 241-242, 263, 268
popup 169
Pose Editor 245, 247
Position 130
Position range 125
Power 122
Profinet 242
Program 101, 139, 192, 257-258
Program and Installation Manager 101, 257
program node 143
Program Node 149
Program Tree 143

R

Radius 130 Recovery mode 23, 124 Reduced 126 Reduced mode 23, 124, 130, 132-133, 135 Reduced Tool direction limit 132 Relative waypoint 155 Remote Control 218, 267 Rename 127 Restrict Elbow 127 risk assessment 3, 7, 12, 15, 19 Robot 129, 243 robot arm 99, 104, 186-187, 191, 216, 243 Robot arm 79 Robot Arm 32 robot cable 47 Robot Limits 122 Robot Moving 134 Robot Not Stopping 134 Robot Program Node 149 Run 101, 139

Copyright © 2009-2021 by Universal Robots A/S. Alle Rechte vorbehalten.

safe Home 135 Safeguard Reset 134 Safety Checksum 102, 121 Safety Configuration 13, 119, 121, 124 Safety functions 17-18 Safety I/O 17, 22, 36-37 Safety instructions 54 Safety planes 126, 244, 247 Safety Settings 8, 119, 265 Save... 101, 257, 259 Screen 99 Script manual 3 Service manual 3 Settings 263 Setup 245 Shoulder 64,99 **Show 126** Shut Down 271 Simple 190

Simulation 102 Speed Slider 102, 115 standard 79 Standard 81 Step 102 Stop 102 Stopped state 104 Stopping Distance 123 Stopping Time 122 Success 195 Switch Case construction 177 System Emergency stop 133 System Emergency Stop 134

Т

TCI 167 Teach Pendant 2, 30-31, 44, 99, 103, 136, 191, 267 **Templates 192** Test button 191 Tilt angle 133 **Tool 129** Tool Center Point 124, 155, 207, 244 **Tool Center Position 130 Tool Communication Interface 220** Tool Direction 131-132 **Tool feature 227 Tool Flange 99 Tool Force 123 Tool I/O 48** Tool Position 129-130 **Tool Speed 123** Trigger Plane 128 Trigger Reduced Mode 126

U

Until 163
Until Distance 165
Until Expression 165
Until Tool Contact 165
UR+ 3
URCaps 266

V

Variable feature 155 Variable waypoint 155 Variables 139, 152 Voltage 249

Wait 167 Warning signs 8 Warranty 62 Waypoint 153, 155-157, 162 Waypoints 106 Wrist 99 Softwareversion: 5.10 Dokumentversion: 9.3.123

99476